DOI QR코드

DOI QR Code

Analysis on the Property Modification in Solution-processed SnZnO Through Composition Ratio Controlling

용액 공정으로 제작된 주석-아연 산화물의 조성 변화에 따른 특성 변화 분석

  • Kim, Dong-Lim (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Rim, You-Seung (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Jeong, Woong-Hee (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Kim, Hyun-Jae (School of Electrical and Electronic Engineering, Yonsei University)
  • 김동림 (연세대학교 전기전자공학과) ;
  • 임유승 (연세대학교 전기전자공학과) ;
  • 정웅희 (연세대학교 전기전자공학과) ;
  • 김현재 (연세대학교 전기전자공학과)
  • Received : 2012.04.19
  • Accepted : 2012.05.24
  • Published : 2012.06.01

Abstract

In this paper, the properties of SnZnO films obtained from solution process with different component fractions were compared. The thermal behavior of the SnZnO solutions showed only a slight change according to the component fraction change. However, the definite changes were revealed at the structural properties of the SnZnO films. With diverse analyses, the origin of the changes was proved to the influence of phase change from $SnO_2$ to ZnO in SnZnO lattice. With the $SnO_2$-phase-dominant SnZnO, the highest field effect mobility and on/off ratio of about 8.6 $cm^2/Vs$ and $2{\times}10^8$ were achieved, respectively.

Keywords

References

  1. T. Kamiya, K. Nomura, and H. Hosono, Sci. Technol. Adv. Mater., 11, 044305 (2010). https://doi.org/10.1088/1468-6996/11/4/044305
  2. H. H. Hsieh, H. H. Lu, H. C. Ting, C. S. Chuang, C. Y. Chen, and Y. Lin, J. Inf. Display, 11, 160 (2010). https://doi.org/10.1080/15980316.2010.9665845
  3. A. Gupta and A. D. Compaan, Appl. Phys. Lett., 85, 684 (2004). https://doi.org/10.1063/1.1775289
  4. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). https://doi.org/10.1038/nature03090
  5. E. M. C. Fortunato, L. M. N. Pereira, P. M. C. Barquinha, A. M. Botelho do Rego, G. Goncalves, A. Vila, J. R. Morante, and R. F. P. Martins, Appl. Phys. Lett., 92, 222103 (2008). https://doi.org/10.1063/1.2937473
  6. D. S. Ginley, Handbook of Transparent Conductors, 1st ed. (Springer, New York, 2010) p. 28.
  7. R. E. Presley, C. L. Munsee, C. H. Park, D. Hong, J. F. Wager, and D. A. Keszler, J. Phys. D: Appl. Phys., 37, 2810 (2004). https://doi.org/10.1088/0022-3727/37/20/006
  8. Y. S. Rim, D. L. Kim, W. H. Jeong, and H. J. Kim, Appl. Phys. Lett., 97, 233502 (2010). https://doi.org/10.1063/1.3524514
  9. S. Jeong, Y. Jeong, and J. Moon, J. Phys. Chem., C112, 11082 (2008).
  10. G. H. Kim, H. S. Shin, B. D. Ahn, K. H. Kim, W. J. Park, and H. J. Kim, J. Electrochem. Soc., 156, H7 (2009). https://doi.org/10.1149/1.2976027
  11. L. S. Prabhumirashi and J. K. Khoje, Thermochim. Acta., 383, 109 (2002). https://doi.org/10.1016/S0040-6031(01)00683-9
  12. T. N. Soitah, C. Yang, L. Sun, Mat. Sci. Semicon. Proc., 13, 125 (2010). https://doi.org/10.1016/j.mssp.2010.03.002
  13. X. Ma, P. Chen, R. Zhang, and D. Yang, J. Alloy. Compd., 509, 6599 (2011). https://doi.org/10.1016/j.jallcom.2011.03.101
  14. J. Szuber, G. Czempik, R. Larciprete, D. Koziej, and B. Adamowicz, Thin Solid Films, 391, 198 (2001). https://doi.org/10.1016/S0040-6090(01)00982-8
  15. T. Kawabe, K. Tabata, E. Suzuki, Y. Yamaguchi, and Y. Nagasawa, J. Phys. Chem., B105, 4239 (2001).
  16. I. Tanaka, K. Tatsumi, M. Nakano, and H. Adachi, J. Am. Ceram. Soc., 85, 68 (2002).
  17. F. A. Selim, M. H. Weber, D. Solodovnikov, and K. G. Lynn, Phys. Rev. Lett., 99, 085502 (2007). https://doi.org/10.1103/PhysRevLett.99.085502
  18. G. H. Kim, B. D. Ahn, H. S. Shin, W. H. Jeong, H. J. Kim, and H. J. Kim, Appl. Phys. Lett., 94, 233501 (2009). https://doi.org/10.1063/1.3151827