DOI QR코드

DOI QR Code

Effect of Gas Phase Cycling Modulation of C2H2/SF6 Flows on the Formation of Carbon Coils

탄소 코일 생성에 대한 C2H2/SF6 기체유량의 싸이클릭 변조 효과

  • Lee, Seok-Hee (Department of Science Education, Busan National University of Education) ;
  • Kim, Sung-Hoon (Department of Engineering in Energy & Applied Chemistry, Silla University)
  • 이석희 (부산교육대학교 과학교육과) ;
  • 김성훈 (신라대학교 에너지응용화학과)
  • Received : 2012.04.06
  • Accepted : 2012.05.22
  • Published : 2012.05.31

Abstract

Carbon coils could be synthesized on nickel catalyst layer-deposited silicon oxide substrate using $C_2H_2$ and $H_2$ as source gases and $SF_6$ as an additive gas under thermal chemical vapor deposition system. The characteristics (formation density and morphology) of as-grown carbon coils were investigated as functions of additive gas flow rate and the cycling on/off modulation of $C_2H_2/SF_6$ flows. Even in the lowest $SF_6$ flow rate (5 sccm) in this work, the cycling on/off modulation injection of $SF_6$ flow for 2 minutes could give rise to the formation of nanosized carbon coils, whereas the continuous injection of $SF_6$ flow for 5 minutes could not give rise to the carbon coils formation. With increasing $SF_6$ flow rates from 5 to 30 sccm, the cycling on/off modulation injection of $SF_6$ flow confines the geometry for the carbon coils to the nanosized ones. Fluorine's role of $SF_6$ during the reaction was regarded as the main cause for the confinement of carbon coils geometries to the nano-sized ones.

니켈촉매 막을 증착시킨 산화규산 기판 위에 아세틸렌기체와 수소기체를 원료기체로 육불화황기체를 첨가기체로 사용하여 열화학기상증착 방법으로 탄소코일을 합성하였다. 첨가기체의 유량과 아세틸렌/육불화황 기체들의 싸이클릭 on/off 유량 변조에 따라 성장된 탄소코일의 특성(형성 밀도, 형상)을 조사하였다. 육불화황의 기체 유량이 가장 낮은 경우(5 sccm)에서, 2분동안 육불화황을 주입하여 아세틸렌/육불화황 기체를 싸이클릭 on/off 유량 변조시킴에 따라 탄소코일을 형성시켰다. 반면 육불화황을 5분 동안 연속적으로 주입한 경우에서는 탄소나노필라멘트 형상이 나타나지 않았다. 육불화황의 유량이 5 sccm에서 30 sccm으로 증가함에 따라 아세틸렌/육불화황 기체들의 싸이클릭 on/off 유량 변조는 탄소코일의 형상을 나노크기의 형태로만 제한시켰다. 육불화황 기체의 플로린 종에 의한 에칭 특성이 이러한 효과를 주게 하는 것으로 이해되었다.

Keywords

References

  1. W. R. Davies, R. J. Slawson, and G. R. Rigby, Nature 171, 756 (1953).
  2. R. T. K. Baker, Carbon 27, 315 (1989). https://doi.org/10.1016/0008-6223(89)90062-6
  3. L. J. Pan, T. Hayashida, M. Zhang, and Y. Nakayama, Jpn. J. Appl. Phys. 40, L235 (2001). https://doi.org/10.1143/JJAP.40.L235
  4. S. Amelinckx, X.B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov, and J. B. Nagy, Science 265, 635 (1994). https://doi.org/10.1126/science.265.5172.635
  5. S. Yang, X. Chen, K. Takeuchi, and S. Motojima, J. Nanosci. Nanotechnol. 6, 141 (2006).
  6. R. Kanada, L.J. Pan, S. Akita, N. Okazaki, K. Hirahara, and Y. Nakayama, Jpn. J. Appl. Phys. 47, 1949 (2008). https://doi.org/10.1143/JJAP.47.1949
  7. W. Wang, K. Yang, J. Gaillard, P. R. Bandaru, and A. M. Rao, Advanced Materials, 20, 179 (2008). https://doi.org/10.1002/adma.200701143
  8. W. In-Hwang, H. Yanagida, and S. Motojima, Mater. Letters 43, 11 (2000). https://doi.org/10.1016/S0167-577X(99)00220-7
  9. K. Akagi, R. Tamura, and M. Tsukada, Phys. Rev. Lett. 74, 2307 (1995). https://doi.org/10.1103/PhysRevLett.74.2307
  10. S. Motojima, Y. Itoh, S. Asakura, and H. Iwanaga, J. Mater. Sci. 30, 5049 (1995). https://doi.org/10.1007/BF00356048
  11. X. Chen, T. Saito, M. Kusunoki, and S. Motojima, J. Mater. Res. 14, 4329 (1999). https://doi.org/10.1557/JMR.1999.0586
  12. X. Chen and S. Motojima, Carbon 37, 1817 (1999). https://doi.org/10.1016/S0008-6223(99)00054-8
  13. X. Chen and S. Motojima, J. Mater. Sci. 34, 5519 (1999). https://doi.org/10.1023/A:1004768629799
  14. S. Motojima, S. Asakura, T. Kasemura, S. Takeuchi, and H. Iwanaga, Carbon 34, 289 (1996). https://doi.org/10.1016/0008-6223(95)00169-7
  15. S. Yang, X. Chen, and S. Motojima, Carbon 44, 3352 (2004).
  16. M. Asmann, J. Heberlein, and E. Pfender, Diamond Relat. Mater. 8, 1 (1999). https://doi.org/10.1016/S0925-9635(98)00365-3
  17. S. -H. Kim, J. Korean Vacuum Soc. 20, 374 (2011). https://doi.org/10.5757/JKVS.2011.20.5.374
  18. S. -H. Kim, J. Korean Vacuum Soc. 21, 48 (2012). https://doi.org/10.5757/JKVS.2012.21.1.48