DOI QR코드

DOI QR Code

Investigation of the Hyperfine Structure Effect in a Mn-Doped LiNbO3

Mn이 첨가된 LiNbO3의 초 미세구조 효과 연구

  • Lee, Haeng-Ki (Department of Radiotechnology, Suseong College) ;
  • Jang, Hyon-Chol (Department of Radiotechnology, Suseong College) ;
  • Park, Jung-Il (Nano-Physics and Technology Laboratory, Department of Physics, Kyungpook National University)
  • 이행기 (수성대학교 방사선과) ;
  • 장현철 (수성대학교 방사선과) ;
  • 박정일 (경북대학교 물리학과 나노물리연구실)
  • Received : 2012.04.11
  • Accepted : 2012.05.22
  • Published : 2012.05.31

Abstract

The computer program (EPR-NMR program version 6.2) employed here sets up the spin Hamiltonian matrices and determines their eigenvalues using exact diagonalization. We study the electron spin resonance for $Mn^{2+}$ in ferroelectric $LiNbO_3$ single crystals. The self-energy is obtained using the projection operator method developed by Argyres and Sigel. The self-energy is calculated to be axially symmetric about the by the spin Hamiltonian. The line-widths decreased as the temperature increased; we assume that the hyperfine structure transition is a more dominant scattering than the other transitions. We conclude that the calculation process presented in this study is useful for quantum optical transitions.

본 연구에서는 Mn을 첨가시킨 $LiNbO_3$ 단 결정을 기술하는 스핀 해밀토니언으로 계의 고유치를 구하고, 이를 이용하여 자기 감수성을 온도 의존성으로 조사하였다. 선형응답이론에 기초한 Argyres-Sigel의 투영연산자 방법을 이용하여 계의 자체 에너지함수를 유효한 항까지 계산하였다. 초 미세구조 효과를 고려한 온도 의존성의 역 자기 감수성은 온도의 증가에 따라 그 효과가 더욱 크게 나타나는 것으로 조사되었다. 자체에너지 함수의 실수 부분인 선 너비는 온도의 증가에 따라 감소하는데 이는 온도의 증가로 인해 $Nb^{5+}$$Li^+$ 이온들이 산소 층과 다른 인접한 산소 층 쪽으로 이동하기 때문인 것으로 보인다.

Keywords

References

  1. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, Appl. Phys. Lett. 9, 72 (1966). https://doi.org/10.1063/1.1754607
  2. A. P. Pechney, Sov. Phys. Solid State 27, 923 (1985).
  3. E. J. Lim, M. M. Fejer, and R. L. Byer, Electron Lett. 25, 174 (1989). https://doi.org/10.1049/el:19890127
  4. E. Kratzig and R. Orlowski, Opt. Quant. Elect. 12, 495 (1980). https://doi.org/10.1007/BF00619922
  5. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, (Oxford, Clarendon, 1970).
  6. M. S. Dresselhause, G. Dresselhause, and P. C. Eklund, Science of Fullerences and Carbon Nanotubes (Academic Press, 1996), Chapter 19.
  7. A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, Science 294, 1317 (2001). https://doi.org/10.1126/science.1065824
  8. O. Chauvet, L. Forro, W. Bacsa, D. Ugarte, B. Doudin, and Walt A. de Heer, Phys. Rev. B 52, R6963 (1995). https://doi.org/10.1103/PhysRevB.52.R6963
  9. P. N. Argyres and J. L. Sigel, Phys. Rev. Lett. 31, 1397 (1973). https://doi.org/10.1103/PhysRevLett.31.1397
  10. A. Kawabata, J. Phys. Soc. Jpn. 29, 902 (1970). https://doi.org/10.1143/JPSJ.29.902
  11. H. Mori, Progr. Theor. Phys. 34, 399 (1965). https://doi.org/10.1143/PTP.34.399
  12. J. Y. Sug and S. D. Choi, Phys. Rev. E 55, 314 (1996).
  13. R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957). https://doi.org/10.1143/JPSJ.12.570
  14. M. P. Petrov, Fiz. Tver. Tela, 10, 3254 (1968).
  15. D. G. Rexford, Y. M. Kim, and H. S. Story, J. Chem. Phys. 52, 860 (1970). https://doi.org/10.1063/1.1673065
  16. D. J. Newman and B. Ng, Rep. Prog. Phys. 52, 699 (1989). https://doi.org/10.1088/0034-4885/52/6/002
  17. A. Thess, R. Lee, P. Nikolaev, H. Dai, and P. Petit, Science 273, 483 (1996). https://doi.org/10.1126/science.273.5274.483
  18. J. C. Slonczewski and P. R. Weiss, Phys. Rev. 109, 272 (1958). https://doi.org/10.1103/PhysRev.109.272
  19. J. I. Park, H. R. Lee, and K. C. Bae, J. Kor. Phys. Soc. 58, 1644 (2011). https://doi.org/10.3938/jkps.58.1644
  20. J. I. Park, H. K. Lee, and H. R. Lee, J. Magnetics 16, 108 (2011). https://doi.org/10.4283/JMAG.2011.16.2.108
  21. N. Sawaki, J. Phys. C 16, 4611 (1983). https://doi.org/10.1088/0022-3719/16/23/021

Cited by

  1. Thermal Conductivity of Single-Walled Carbon Nanotube by Using Memory Function vol.22, pp.3, 2013, https://doi.org/10.5757/JKVS.2013.22.3.144