DOI QR코드

DOI QR Code

Comparative Analysis of CCR2 and CCR5 Binding Sites to Facilitate the Development of Dual Antagonists: An in Silico Study

  • Kothandan, Gugan (Department of Biohemistry, Centre for Bioinformatics, University of Madras, Guindy campus)
  • Received : 2012.02.05
  • Accepted : 2012.03.27
  • Published : 2012.03.30

Abstract

Chemokine receptor antagonists have potential applications in field of drug discovery. Although the chemokine receptors are G-protein-coupled receptors, their cognate ligands are small proteins (8 to 12 kDa), and so inhibiting the ligand/receptor interaction has been challenging. In particular, CCR2 and CCR5 and their ligands have been implicated in the pathophysiology of a number of diseases, including rheumatoid arthritis and multiple sclerosis. Based on their roles in disease, they have been attractive targets for the pharmaceutical industry, targeting both CCR2 and CCR5 could be a useful strategy. Because of the importance of these receptors, providing information regarding the binding site is of prime importance. Herein, we report the comparison of CCR2 of CCR5 binding sites both sequentially as well as structurally. We also urged the importance of crucial residues in the binding site, to facilitate the development of dual antagonists targeting both the receptors. These results could also be useful for the design of novel and potent dual CCR2 and CCR5 antagonists using structure based drug design.

Keywords

References

  1. F. Sallusto and M. Baggiolini, "Chemokines and leukocyte traffic", Tat. Immunol., Vol. 9, pp. 949-952, 2008.
  2. A. Viola and A. D. Luster, "Chemokines and their receptors: Drug targets in immunity and inflammation", Annu. Rev. Pharmacol. Toxicol., Vol. 48, pp. 171-197, 2008. https://doi.org/10.1146/annurev.pharmtox.48.121806.154841
  3. S. J Allen, S. E. Crown and T. M. Handel, "Chemokine: Receptor structure, interactions, and antagonism", Annu. Rev. Immunol., Vol. 25, pp. 787-820, 2007. https://doi.org/10.1146/annurev.immunol.24.021605.090529
  4. I. F. Charo and R. M. Ransohoff, "The Many Roles of Chemokines and Chemokine Receptors in Inflammation", N. Engl. J. Med., Vol. 354, pp. 610- 621, 2006. https://doi.org/10.1056/NEJMra052723
  5. J. G. Kettle, A. W. Faull, A. J. Barker, D. Huw Davies and M. A. Stone, "N-Benzylindole-2-carboxylic acids: potent functional antagonists of the CCR2b chemokine receptor", Bioorg. Med. Chem. Lett., Vol. 14, pp. 405-408, 2004. https://doi.org/10.1016/j.bmcl.2003.10.049
  6. C. Zhou, L. Guo, W. H. Parsons, S. G. Mills, M. MacCoss, P. P. Vicario, H. Zweerink, M. A. Cascieri, M. S. Springerb and L. Yanga, "$\alpha$-Aminothiazole-$\gamma$-aminobutanoic amides as potent, small molecule CCR2 receptor antagonists", Bioorg. Med. Chem. Lett., Vol. 17, pp. 309-314, 2007. https://doi.org/10.1016/j.bmcl.2006.10.059
  7. M. Imai, T. Shiota, K. Kataoka, C. M. Tarby, W. J. Moree, T. Tsutsumi, M. Sudo, M. M. Ramirez- Weinhouse, D. Comer, C. M. Sun, S. Yamagami, H. Tanaka, T. Morita, T. Hada, J. Greene, D. Barnum, J. Saunders, P. L. Myers, Y. Katoa and N. Endoa, "Small molecule inhibitors of the CCR2b receptor. Part 1: Discovery and optimization of homopiperazine derivatives", Bioorg. Med. Chem. Lett., Vol. 14, pp. 5407-5411, 2004. https://doi.org/10.1016/j.bmcl.2004.08.008
  8. W. J. Moree, K. I. Kataoka, M. M. Ramirez-Weinhouse, T. Shiota, M. Imai, M. Sudo, T. Tsutsumi, N. Endo, Y. Muroga, T. Hada, H. Tanaka, T. Morita, J. Greene, D. Barnum, J. Saunders, Y. Kato, P. L. Myers and C. M. Tarby, "Small molecule antagonists of the CCR2b receptor. Part 2: Discovery process and initial structure-activity relationships of diamine derivatives", Bioorg. Med. Chem. Lett., Vol. 14, pp. 5413-5416, 2004. https://doi.org/10.1016/j.bmcl.2004.08.009
  9. S. P. Weisberg, D. Hunter, R. Huber, J. Lemieux, S. Slaymaker, K. Vaddi, I. Charo, R. L. Leibel, A. and W. Ferrante Jr, "CCR2 modulates inflammatory and metabolic effects of high-fat feeding", J. Clin. Investig., Vol. 116, pp 115-124, 2006. https://doi.org/10.1172/JCI24335
  10. C. D. Strader, T. M. Fong, M. R. Tota, D. Underwood and R. A. F. Dixon, "Structure and function of G protein-coupled receptors", Annu. Rev. Biochem., Vol. 63, pp. 101-132, 1992.
  11. F. Cocchi, A. L. DeVico, A. Garzino-Demo, S. K. Arya, R. C. Gallo and P. Lusso, "Identification of RANTES, MIP-1$\alpha$ and MIP-$1\beta$ as the major HIVsuppressive factors produced by CD8+ T cells", Science., Vol. 270, pp. 1811-1815, 1995. https://doi.org/10.1126/science.270.5243.1811
  12. R. Liu, W.A. Paxton, S. Choe, D. Ceradini, S. R. Martin, R. Horuk, M. E. MacDonald, H. Stuhlmann, R. A. Koup and N. R. Landau, "Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection", Cell., Vol. 86, pp. 367-378, 1996. https://doi.org/10.1016/S0092-8674(00)80110-5
  13. M. Samson, F. Libert, B. J. Doranz, J. Rucker, C. Liesnard, C. M. Farber, S. Saragosti, C. Lapoumeroulie, J. Cognaux, C. Forceille, G. Muyldermans, C. Verhofstede, G. Burtonboy, M. Georges and T. Imai, "Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene", Nature., Vol. 382, pp 722-725, 1996. https://doi.org/10.1038/382722a0
  14. A. Viola and A. D. Luster, "Chemokines and their receptors: drug targets in immunity and inflammation", Annu Rev Pharmacol Toxicol., Vol. 48, pp 171-197, 2008. https://doi.org/10.1146/annurev.pharmtox.48.121806.154841
  15. J. E. Pease and R. Horuk, "Chemokine receptor antagonists: part 1", Expert Opin Ther Pat., Vol. 19, pp 39-58, 2009. https://doi.org/10.1517/13543770802641346
  16. J. E. Pease and R. Horuk, "Chemokine receptor antagonists: part2", Expert Opin Ther Pat., Vol. 19, pp 199-221, 2009. https://doi.org/10.1517/13543770802641353
  17. J. S. Hunt and F. Romanelli, "Maraviroc, a CCR5 coreceptor antagonist that blocks entry of human immunodeficiency virus type 1", Pharmacotherapy., Vol. 29, pp 295-304, 2009. https://doi.org/10.1592/phco.29.3.295
  18. A. J. Wagstaff, "Plerixafor: in patients with non-Hodgkin's lymphoma or multiple myeloma", Drugs., Vol. 69, pp. 319-326, 2009. https://doi.org/10.2165/00003495-200969030-00007
  19. I. F. Charo, W. Peters, "Chemokine receptor 2 (CCR2) in atherosclerosis, infectious diseases, and regulation of T-cell polarization", Microcirculation., Vol. 10, pp 259-264, 2003. https://doi.org/10.1080/mic.10.3-4.259.264
  20. T. L. Ness, S. L. Kunkel, C. M. Hogaboam, "CCR5 antagonists: the answer to inflammatory disease?", Expert Opin Ther Pat., Vol. 16, pp. 1051-1065, 2006. https://doi.org/10.1517/13543776.16.8.1051
  21. B. Wu, E. Y. Chien, C. D. Mol, G. Fenalti, W. Liu, V. Katrich, R. Abaygan, A. Brooun, P. Wells, F. C. Bi, D. J. Hamel, P. Kuhn, T. M. Handel, V. Cherezov, R. C. Stevens, "Structures of the CXCR4 Chemokine GPCR with Small-Molecule and Cyclic Peptide Antagonists", Science., Vol. 330, pp. 1066-1071, 2010. https://doi.org/10.1126/science.1194396
  22. A. Sali and T. L. Blundell, "Comparative protein modelling by satisfaction of spatial restraints", J Mol Biol, Vol. 234, pp. 779-815, 1993. https://doi.org/10.1006/jmbi.1993.1626
  23. A. Sali and J. P. Overington, "Derivation of rules for comparative protein modeling from a database of protein structure alignments", Protein Sci, Vol. 3, pp. 1582-1596, 1994. https://doi.org/10.1002/pro.5560030923
  24. A. Sali, "Modeling mutations and homologous proteins", Curr Opin Biotechnol, Vol. 6, pp. 437-451, 1995. https://doi.org/10.1016/0958-1669(95)80074-3
  25. A. Sali, L. Potterton, F. Yuan, H. van Vlijmen, and M. Karplus, "Evaluation of comparative protein modeling by MODELLER", Proteins, Vol. 23, pp. 318-326, 1995. https://doi.org/10.1002/prot.340230306
  26. R. A. Laskowski, M. W. MacArthur, D. S. Moss, and J. M. Thornton, "PROCHECK: a program to check the stereochemical quality of protein structures", J. Appl. Cryst., Vol. 26, pp. 283-291, 1993. https://doi.org/10.1107/S0021889892009944