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Abstract. Sarhan and Kundu (2009) introduced a new distribution named as the 

generalized linear failure rate distribution. This distribution generalizes several well 

known distributions. The probability density function of the generalized linear failure 

rate distribution can be right skewed or unimodal and its hazard function can be 

increasing, decreasing or bathtub shaped. This distribution can be used quite 

effectively to analyze lifetime data in place of linear failure rate, generalized 

exponential and generalized Rayleigh distributions. In this paper, we apply the 

simulated annealing algorithm to obtain the maximum likelihood point estimates of 

the parameters of the generalized linear failure rate distribution. Simulated annealing 

algorithm can not only find the global optimum; it is also less likely to fail because it 

is a very robust algorithm. The estimators obtained using simulated annealing 

algorithm have been compared with the corresponding traditional maximum 

likelihood estimators for their risks. 
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1. INTRODUCTION 
 

Recently, Sarhan and Kundu (2009) proposed a new three-parameter distribution 

named as generalized linear failure rate distribution (GLFR). The GLFR distribution 

generalizes several well known distributions such exponential, Rayleigh, linear failure rate, 

generalized exponential and generalized Rayleigh distributions. The hazard rate function 

of the GLFR distribution takes different shapes which makes it flexible and can fit very 

well a wide range of survival data sets. 
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 Successful application of the generalized linear failure rate distribution requires 

having acceptable point estimates of its three unknown parameters. In estimation theory 

and data analysis, global optimization of the log-likelihood function is a cornerstone in the 

maximum likelihood method. The maximum likelihood estimates (MLE) of the 

parameters are those values that maximize the likelihood function. The maximum 

likelihood method has very desirable properties. In some cases when the number of 

unknown parameters is bigger than or equal two, the optimization problem becomes 

difficult to solve analytically. In such cases, numerical techniques are required. Sarhan 

and Kundu (2009) used the traditional gradient technique to derive the maximum 

likelihood estimation (MLE) of the different parameters of the GLFR distribution and 

discussed some of the testing of hypothesis problems. The traditional gradient technique 

might only work under special case where the gradients of the functions to be maximized 

are defined at all points. This means that they could be gradient sensitive. The most 

important fact regarding the traditional gradient technique is that it is a local optimization 

algorithm and therefore, when we use it to find the global optimization, we would most 

likely end up getting a local optimum depending on the initial guess for the distribution 

parameters at the beginning of the algorithm execution. That was what Sarhan and Kundu 

(2009) faced when they used the traditional gradient technique to get the MLEs of the 

parameters. Cramer (1986) and Finch et al. (1989) list some of ”unpleasant possibilities” 

for the traditional gradient technique of the maximum likelihood method. Since the 

traditional gradient technique is highly sensitive to the initial guess and is capable only of 

local optimization, it is necessary to look out for other technique which is capable of 

finding the global optimization and is relatively insensitive to the user’s initial guess.  

One of the more useful algorithms, easy to implement and a robust technique for 

global optimization of the log-likelihood function (as a multi-dimensional function) is 

Simulated Annealing Algorithm (SAA), Brooks et al. (1995). SAA is capable of 

efficiently finding the global optimum of any m-dimensional log-likelihood function 

(m≥ 1). Also, SAA is an easy approach to use to optimize the log-likelihood function. It 

explores the function’s entire surface and tries to optimize the function while moving both 

uphill and downhill. Thus, it is largely independent of the starting values, often a critical 

input in conventional algorithms. Further, it can escape from local optima and go on to 

find the global optimum by the uphill and downhill moves. Simulated annealing algorithm 

also makes less stringent assumptions regarding the function than do conventional 

algorithms (it does not need even to be continuous). Because of the relaxed assumptions, it 

can more easily deal with functions that have ridges and plateaus. It is worthwhile to 

mention that SAA can be used to determine the optimal set of parameters for any 

distribution given its ability to perform global optimization for any multidimensional log-

likelihood function. This means that SAA works well for any distribution. Tan and 

Raghavan (2008) used SAA to globally maximize the multidimensional log-likelihood 

function to determine the MLEs of a mixture distribution parameters. Finally, it can 

optimize functions that are not defined for some parameter values. In optimization 

literatures, the function to be optimized is usually referred to as the objective function 

(Brooks and Morgan, 1995). The same convention will be followed here and our log-

likelihood function will be called as the objective function.  

The main aim of this paper is to use the SAA to globally maximize the three-
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dimensional log-likelihood function which will in turn help determine the optimal values 

(MLEs) of the GLFR distribution parameters. The obtained maximum likelihood 

estimates are compared with the traditional ones obtained using gradient method through 

numerical simulations.  

The rest of this paper is organized as follows. Section 2 presents a brief prescription 

of the GLFR distribution. The likelihood function and likelihood equations required to 

derive the maximum likelihood estimators of the GLFR distribution are presented in 

Section 3. Section 4 introduces the general simulating annealing algorithm. Applying 

simulated annealing algorithm to parameter estimation is presented in Section 5.  

Simulation study and comparisons between the traditional maximum likelihood method 

and the proposed algorithm are given in Section 6. Finally, Section 7 concludes the paper. 

 

 

2. THE GENERALIZED LINEAR FAILURE RATE DISTRIBUTION 

 

The cumulative distribution function of the generalized linear failure rate distribution 

with three parameters, denoted by GLFRD(,,), takes the form, Sarhan and Kundu 

(2009), 

F t;,,  = [1 − e
− t+



2
t2 

], t ≥ 0, γ > 0.                              (2.1) 

where  and β ≥ 0 such that + > 0. 

The probability density function (pdf) and the failure function of GLFRD(,,) are 

given respectively by 

f t;,,  =   + t  1 − e
− t+



2
t2 

 
−1

e
− t+



2
t2 

, t ≥ 0,                (2.2) 

and 

h t;,,  =
γ(α+βt)[1−e

− α t+
β
2

t2 
]γ−1e

−(α t+
β
2

t2)

1−[1−e
−(t +

β
2

t2)
]γ

.                            (2.3) 

Figures 1 provides the pdf and the failure rate functions of GLFRD(,,) for 

different parameter values. 

 

 
Figure 1. The pdf and failure rate function of GLFRD(,,) 
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From Figure 1, it is immediate that the pdf can be decreasing (right skewed) or 

unimodal and the failure rate function can be increasing, decreasing, or bathtub shaped. It 

is immediate that from GLFRD(,,), the following special cases can be derived: (i) 

Linear failure distribution LFRD(,), when  = 1; (ii) Generalized exponential 

distribution GE(,), when = 0; (iii) Generalized Rayleigh distribution GRD(,), when 

= 0. One can easily verify that: (i) if  = 1, the failure rate function of the GLFR 

distribution is either increasing (if > 0) or constant (if = 0 and  > 0); (ii) when  > 1, 

the failure rate function should be increasing only; and (iii) if  < 1, then the failure rate 

function will be either decreasing if  = 0 or a bathtub shaped if  > 0.  

Gupta and Gupta (2007) observed that the reversed hazard function plays an 

important role in the reliability analysis. The reversed hazard function of the 

GLFRD(,,) is 

r t;,,  =
f(t;,,)

F(t;,,)
= 

(α+βt)e
−(α t+

β
2

t2)

1−e
−(α t+

β
2

t2)
= γ

f(t;,,1)

F(t;,,1)
= γr t;, , 1 .          (2.4) 

It is well known that the hazard function or the reversed hazard function uniquely 

determines the corresponding probability density function. From (2.4) it is clear that the 

GLFRD(,,) is a proportional reversed hazard family. 

 

 

3. MAXIMUM LIKELIHOOD ESTIMATORS 

 

In this section, we consider the traditional maximum likelihood estimators (MLEs) of 

GLFRD distribution parameters. Let us assume that we have a simple random sample 

t = t1 , t2 , … , tn  from GLFRD(,,). Using (2.2) the likelihood function of this sample is 

L ,,  t =  f ti ;, ,  = γne−(αT1+βT2)    α + βti [1 − e−(αti +
β

2
ti

2)]γ−1 n
i=1

n
i=1   

(3.1) 

where 

          Tj =
1

j
 ti

jn
i=1 , j = 1,2. 

The log-likelihood function becomes 

ℒ = nlnγ − αT1 − βT2 +  ln α + βti + (γ − 1) [1 − e
− αti +

β

2
ti

2 
]n

i=1
n
i=1 .      (3.2) 

The maximum likelihood point estimates of ,,  can be derived by maximizing the 

likelihood (3.1) or the log-likelihood function (3.2). This can be done by using ordinary 

optimization technique. Gradient method depends on setting the partial derivatives of the  

ℒ with respect to the three parameters equal zero to get the following system of non-linear 

likelihood equations in the three parameters 

∂ℒ

∂α
= −T1 +  

1

(α+βti )
+ (γ − 1) 

ti e
−(α ti +

β
2

ti
2)

1−e
−(α ti +

β
2

ti
2)

= 0,     n
i=1

n
i=1                  (3.3) 

∂ℒ
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2
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∂ℒ

∂γ
=

n

γ
+  ln⁡[1 − e

− αti +
β

2
ti

2 
]n

i=1 = 0.                                                  (3.5) 
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The above system of non-linear equations does not have explicit solution and then we 

have to solve it numerically. This is the most common problem when the number of 

unknown parameters to be estimated exceeds two (in some cases equals two). To use a 

numerical technique to solve that system, it will be needed to evaluate the gradient terms 

and the objective function ℒ itself at different points the numerical technique needs. This 

is, not an easy task in addition to that it is quite boring to derive the gradient of this 

complicated ℒ. This motivates why we looked for another method to be used instead of 

the traditional numerical techniques which is efficient and easy to implement. In the 

following sections, we discuss the simulating annealing algorithm and apply it to calculate 

the MLE of the three unknown parameters of the GLFR distribution. 

 

 

4. GENERAL SIMULATING ANNEALING ALGORITHM 

 

Annealing is the physical process of heating and then cooling a substance in a 

controlled manner. The desired result is a strong crystalline structure. The structure in 

question is our encoded solution, and the temperature is used to determine how and when 

new solutions are accepted, Kirkpatrick et al. (1983). 

The simulated annealing algorithm is very simple and can be defined in five steps 

(see Figure 2). 

 

 
 

Figure 2. Simulating annealing algorithm 

 

Step 1: Initial Solution 

For most problems, the initial solution will be a random one. This is loaded into what 

is called the current solution. Another alternative is to load the initial solution with an 

existing solution, possibly one found in a previous run. 
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Step 2: Assess Solution 

Assessing the solution consists of decoding the current solution and then performing 

whatever action is necessary to evaluate it against the given problem. The encoded 

solution may simply consist of a set of variables. These variables would be decoded from 

the current solution and the energy of the solution assessed based upon how well it solved 

the given problem. 

 

Step 3: Randomly Tweak Solution 

Tweaking the solution begins by copying the current solution into what is called the 

working solution. We then randomly modified the working solution. Once the working 

solution has been tweaked, we assess the solution as defined in the previous step. This 

random trail is based upon the Metropolis algorithm, Jones (2003). 

 

Step 4: Acceptance Criteria 

Now, we have two solutions. The first is our original solution called the current 

solution and the second is tweaked version called the working solution. Each has an 

associated energy, which is the strength of the solution. Our working solution is then 

compared to the current solution. If the working solution has less energy than the current 

solution then we copy the working solution to the current solution and move to 

temperature reduction. On the other hand, if the working solution is worse than the current 

solution, we evaluate the acceptance criteria to figure out what to do with the current 

working solution. The probability of acceptance is given by: 

P = exp⁡(−
∆

T
)                                                       (4.1) 

where Δ is the increase in the objective function g and T is a control parameter, which by 

analogy with the original application is known as the system ’temperature’ irrespective of 

the objective function involved. 

 

Step 5: Reduce Temperature 

After some number of iterations through the algorithm at this temperature, we reduce 

the temperature by a small amount. Large varieties of cooling schedules exist, but in this 

paper we will use a simple geometric function 

Ti+1 = ρTi                                                       (4.2) 

whereρ < 0 and constant. Typically, 0.75≤ ρ ≤0.95. 

A number of iterations will be performed at a single temperature. When that set of 

iterations is complete, the temperature is reduced and the process continues until the 

temperature reaches zero. 

Ease of use and provision of good solutions to real-world problems makes this 

algorithm be one of the most powerful and popular meta-heuristics to solve many 

optimization problems. 

The basic structure of simulated annealing algorithm is presented in Table 1, where 

the following notation is used: 

S = the current solution, 

S∗= the best solution. 

Si = neighboring solution, 

g(S) = the value of objective function at solution S, 
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i = repetition counter, 

T0= initial temperature, 

Tf= final temperature, 

I = number of repetition allowed at each temperature level, 

p = probability of accepting Si when it is not better than S. 

 

Table 1. Simulated annealing algorithm for minimization problem 

 

It is obvious that this procedure just takes into account the minimization problems, 

hence while performing a maximization problem, the objective function is multiplied by 

(1) to obtain a capable form. 

The algorithm starts with an initial solution for the problem. As it is obvious from 

Table 1, SAA has two cycles, inner and outer. In the inner cycle of the SA, repeated while 

n < I, a neighboring solution S𝑖of the current solution S is generated. If Δ0 (S𝑖  is better 

than S), then the generated solution replaces the current solution, otherwise the solution is 

accepted with a criterion probability. The value of the temperature, T, decreases in each 

iteration of the outer cycle of the algorithm. 
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As a meta-heuristic algorithm, the most important feature of this algorithm is the 

possibility of accepting a worse solution, hence allowing it to prevent falling into a local 

optimum trap. Obviously, the probability of accepting a worse solution decreases as the 

temperature decreases in each outer cycle. The performance of SAA depends on the 

definition of the several control parameters: 

 The initial temperature T0  should be high enough that in the first iteration of the 

algorithm, the probability of accepting a worse solution is, at least, of 80%, Kirkpatrick 

et al. (1983). 

 The most commonly used temperature reducing function is geometric. 

 The length of each temperature level I determines the number of solutions generated 

at a certain temperature T. 

 The stopping criterion defines when the system has reached a desired energy level. 

 

It is obvious that these control parameters are chosen with respect to the specific 

problem at hand. When adapting this general algorithm to a specific problem, the 

procedure to generate both initial and neighboring solutions is very important in addition 

to the control parameter. The details of proposed SAA to parameter estimation problem 

are presented in the next section. 

 

 

5. APPLYING THE SAA TO PARAMETER ESTIMATION 

 

To estimate the three parameters of generalized linear failure rate distribution, we need to 

maximize L (or ℒ) using simulated annealing algorithm. In this regard, the steps of this 

algorithm are briefly given below. 

 

Algorithm 5.1 To estimate the three parameters of GLFR distribution using SAA, we 

follow the following steps: 

 
step 1: Generate a random sample from the GLFR distribution with a large enough size. 

step 2: Determine control parameters of SAA, i.e. T0, T𝑓 , ρ,I. 

step 3: Generate random values for the three parametersα, β, γ. 

step 4: Compute the log-likelihood function ℒ at this randomly generated solution. 

step 5: While the stop criterion is not reached do: 

step 5.1: If T > T0 then let T = ρ ∗T 

step 5.2: Generate neighboring values, say α0 , β0 , γ0 forα, β, γ. 

step 5.3: Compute the log-likelihood function at this new solution, say L0. 

step 5.4: If ℒ0 > ℒ then set  =α0,   =β0,  = γ0, and ℒ = ℒ0 . 

step 5.5: Else 

step 5.5.1: Calculate Δ = ℒℒ0. 

step 5.5.2: Generate a random value u from Uniform(0, 1). 

step 5.5.3: If u < exp(−
Δ

T
) then set =α0,  =β0,   =γ0. 

step 6: Print α, β, γ and ℒ. 

 
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In SAA, the temperature parameter controls the search for the optimum solution. The 

temperature parameter typically starts off high and is slowly lowered (cooled) in each 

iteration. At every iteration a new solution (point) is generated and its distance from the 

current solution is proportional to the temperature. If the new solution has a better 

function value it replaces the current solution and iteration counter is incremented. It is 

possible to accept and move forward with a worse solution. The probability of doing so 

depends on the temperature. This unintuitive step sometime helps identify a new search 

region in hope of finding a better maximum. 

The initial temperature T0 for optimizing the log-likelihood function has to be kept 

high and it could be set to the approximate range of variation of the log-likelihood 

function which can be determined by a random space search of the log-likelihood function 

value for different input parameter combination. It is important to mention here that a 

precise value for T0 is not required. It is only needed to specify a plausible value for T0 

that would guarantee a successful SAA run and a good start for this would be to set T0 to 

be the range of the log-likelihood function. It is advocated that a high initial temperature is 

essential for the SAA to achieve the global optimum value. However, setting too high 

initial temperature makes the SAA inefficient as it will take longer time to attain the 

global optimum. Very hight initial temperature values cause SAA less preferred as it 

causes slower processing speed, larger memory requirements and increased computational 

load, all of these are undesirable. There is no hard and fast rule for setting the initial 

temperature value. However, good judgment should be exercised when a user sets a value 

for it (Tan and Raghavan, 2008). 

As an overall conclusion, if the control parameters of SAA are defined correctly, 

unbiased estimations with minimum variance will be straightforward. 

 

 

6. SIMULATION STUDY 

 

To illustrate the new approach, Monte Carlo simulation method is applied to present 

two examples. Furthermore, to know the effects of the sample size on the performance of 

the simulated annealing algorithm, samples of size 100; 250; 500 and 1000 have been 

considered and used to estimate the three parameters of the GLFR distribution. It is 

straightforward from the primary estimation theory that the bigger the sample size the 

better the estimation. However, here as the sample size increases the more complicated 

will be the log-likelihood function to maximize. Therefore, the selection of the sample 

size is a matter of compromise. For both two examples, the cooling rate has been 

considered as 0:80, the initial and final temperatures are 1 and 1 _ 10�8, respectively. To 

see how the algorithm approaches the maximum, and finally the estimations, its 

performance is illustrated for these two examples. 

 

All codes has been done using Matlab R2008b, and been run on Intel(R) Core(TM) 

i5 CPU M430@2.27 GHz processor with 4:00 GB of RAM. 

 

In the following two examples, the following scheme has been adopted: 
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1. Specify the values of the parameters α, β, and , sayα0 , β0, and γ0, respectively. 

2. Specify the sample size of random sample n. 

3. Generate a random sample with size n from the GLFRD (,,). 

4. Using the generated sample obtained in step 3, estimate the three parameters , , 

and    using traditional maximum likelihood method and Simulated Annealing  

Algorithm. 

5. Repeat steps 3 and 4 N-times. 

6. Compute the root mean squared error RMSE associated with each estimate of  

Every element of the vector of unknown parameters θ = (θ1 , θ2 , θ3) = (,,) 
 according to the following formula 

𝑅𝑀𝑆𝐸θ =   
 (θ j

 i 
− θj0)2N

i=1

N
 

where θ j
 i 

 is the estimated value of the parameter _j using the random sample  

generated in the iteration i and θj0 is the true value of θj . 

7. Compute the mean of the estimated values obtained from the N iterations for every  

parameter θj ,  j = 1; 2; 3, according to the following formula 

θ  j =  
 θ j

 i N
i=1

N
 

8. Repeat the entire process for the sizes n = 100,250,500 and 1000 at number of 

iteration N = 10000. 

 

Example 1: In this example it is assumed that θ = (,,) = (2,1,2). Table 2 summarizes 

the mean value and the root mean squared error associated with the every estimator 

obtained using the traditional maximum likelihood estimators (MLE) and Simulated 

Annealing Algorithm (SAA) for all the three parameters. Furthermore, Figure 3 gives 

plots of these results. 

 

Table 2. The average point estimate and the RMSE’s associated with the estimators of θ = 

(,,) using maximum likelihood and Simulated Annealing Algorithm 

 
 

Example 2: In this example, it is assumed that θ  = (,,) = (1,2,0:5). Table 3 

summarizes the average point estimate and the root mean squared errors associated with 

the estimators using maximum likelihood estimators and Simulated Annealing Algorithm. 

Furthermore, Figure 4 gives plots of these results. 
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Figure 3. The averages of the point estimates and RMSE’s for the parameters 
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Figure 4. The averages of the point estimates and RMSE’s for the parameters 

 

  



 

103  Ammar M. Sarhan and A. A. Karawia 

 

Table 3. The average point estimate and the RMSE’s associated with the estimators of θ = 

(,,) using maximum likelihood and Simulated Annealing Algorithm 

 
 

Based on the results summarized on tables 2 and 3 and plotted in Figures 3 and 4, we 

could immediately conclude that: as it was expected, the RMSE’s are monotonically 

decreasing with increasing sample size n. The RMSE𝑀𝐿  is greater than RMSE𝑆𝐴𝐴  for all 

investigated sizes n. Also, the average estimate for every parameters using SAA is more 

closer to the exact value than that obtained by using the traditional ML. From the above 

analysis, one can conclude that the Simulated Annealing Algorithm provides better 

estimators than the maximum likelihood method for the case studied in this paper. The 

performance of the techniques become almost the same when the sample size becomes 

very large. 

 

 

7. CONCLUSION 

 

In this paper, we applied the Simulated Annealing Algorithm to obtain the MLE of the 

three unknown parameters of the generalized linear failure rate distribution. The MLE’s 

obtained using SAA were compared with those obtained using the gradient method by 

solving a nonlinear system of three equations numerically. Based on the results obtained, 

the proposed approach yields better point estimates of the three unknown parameters at all 

studied sample sizes. As a future work, SAA can be used to derive the MLE of the 

unknown parameters indexed to a lifetime distribution using different types of data. This 

work is in progress. 
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