랫드의 혈액응고 및 혈소판 응집에 미치는 은나노 입자의 영향

Effects of Citrate-capped Silver Nanoparticles on the Blood Coagulation and Platelet Aggregation in Rats

  • 이연진 (동덕여자대학교 약학대학) ;
  • 박광식 (동덕여자대학교 약학대학)
  • Lee, Yeonjin (College of Pharmacy, Dongduk Women's University) ;
  • Park, Kwangsik (College of Pharmacy, Dongduk Women's University)
  • 투고 : 2012.11.12
  • 심사 : 2012.12.27
  • 발행 : 2012.12.31

초록

Effects of citrate-capped silver nanoparticles (AgNPs) on the blood coagulation and platelet aggregation were investigated using whole blood, platelet rich plasma (PRP) and washed platelet obtained from SD male rats. To confirm the stability of AgNPs in the test, size distribution of the nanoparticles was measured in the vehicles including distilled water, serum, and platelet buffers. The average size of AgNPs was 20 nm in the vehicles, which means that the stability was maintained during the whole experimental period. When blood coagulation was monitored by using whole blood impedance aggregometer, coagulation was not observed at the concentration of 1, 10 and 50 ppm. Platelets in plasma or in buffer were not aggregated by AgNPs at the concentration of 1, 2 and 4 ppm, respectively. The test concentration of AgNPs could not be increased because the dark color of the nanoparticles impeded the transmission of light, which is an indicator of aggregation. Although the blood or platelets were pre-activated by collagen, thrombin, or ADP with sub-threshold level, aggregation was not observed at the test concentration. Microscopic observation also supported the result obtained by the aggregometer.

키워드

과제정보

연구 과제 주관 기관 : 동덕여자대학교

참고문헌

  1. de Lima, R., Seabra, A. B. and Durán, N. : Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J. Appl. Toxicol. 32, 867 (2012). https://doi.org/10.1002/jat.2780
  2. Marambio-Jones, C. and Hoek, E. M. V. : A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 12, 1531 (2010). https://doi.org/10.1007/s11051-010-9900-y
  3. Mukherjee, S. G., O'Claonadh, N., Casey, A. and Chambers, G. : Comparative in vitro cytotoxicity study of silver nanoparticle on two mammalian cell lines. Toxicol. In Vitro. 26, 238 (2012). https://doi.org/10.1016/j.tiv.2011.12.004
  4. Li, Y., Chen, D. H., Yan, J., Chen, Y., Mittelstaedt, R. A., Zhang, Y., Biris, A. S., Heflich, R. H. and Chen, T. : Genotoxicity of silver nanoparticles evaluated using the Ames test and in vitro micronucleus assay. Mutat. Res. 745, 4 (2011).
  5. Suresh, A. K., Pelletier, D. A., Wang, W., Morrell-Falvey, J. L., Gu, B. and Doktycz, M. J. : Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types. Langmuir. 28, 2727 (2012). https://doi.org/10.1021/la2042058
  6. Choi, J., Reipa, V., Hitchins, V. M., Goering, P. L. and Malinauskas, R. A. : Physicochemical characterization and in vitro hemolysis evaluation of silver nanoparticles. Toxicol. Sci. 123, 133 (2011). https://doi.org/10.1093/toxsci/kfr149
  7. El Badawy, A. M., Silva, R. G., Morris, B., Scheckel, K. G., Suidan, M. T. and Tolaymat, T. M. : Surface charge-dependent toxicity of silver nanoparticles. Environ. Sci. Technol. 45, 293 (2011).
  8. Loeschner, K., Hadrup, N., Qvortrup, K., Larsen, A., Gao, X., Vogel, U., Mortensen, A., Lam, H. R. and Larsen, E. H. : Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part. Fibre. Toxicol. 8, 18 (2011). https://doi.org/10.1186/1743-8977-8-18
  9. Park, E. J., Choi, K. and Park, K. : Induction of inflammatory responses and gene expression by intratracheal instillation of silver nanoparticles in mice. Arch. Pharm. Res. 34, 299 (2011). https://doi.org/10.1007/s12272-011-0216-y
  10. Kim, Y. S., Kim, J. S., Cho, H. S., Rha, D. S., Kim, J. M., Park, J. D., Choi, B. S., Lim, R., Chang, H. K., Chung, Y. H., Kwon, I. H., Jeong, J, Han, B. S. and Yu, I. J. : Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal. Toxicol. 20, 575 (2008). https://doi.org/10.1080/08958370701874663
  11. Sung, J. H., Ji, J. H., Song, K. S., Lee, J. H., Choi, K. H., Lee, S. H. and Yu, I. J. : Acute inhalation toxicity of silver nanoparticles. Toxicol. Ind. Health 27, 149 (2011). https://doi.org/10.1177/0748233710382540
  12. Kim, J. S., Song, K. S., Sung, J. H., Ryu, H. R., Choi, B. G., Cho, H. S., Lee, J. K. and Yu, I. J. : Genotoxicity, acute oral and dermal toxicity, eye and dermal irritation and corrosion and skin sensitisation evaluation of silver nanoparticles. Nanotoxicology. Epub ahead of print (2012).
  13. Park, K., Park, E. J., Chun, I. K., Choi, K., Lee, S. H., Yoon, J. and Lee, B. C. : Bioavailability and toxicokinetics of citratecoated silver nanoparticles in rats. Arch. Pharm. Res. 34, 153 (2011). https://doi.org/10.1007/s12272-011-0118-z
  14. Stevens, K. N., Crespo-Biel, O., van den Bosch, E. E., Dias, A. A., Knetsch, M. L., Aldenhoff, Y. B., van der Veen, F. H., Maessen, J. G., Stobberingh, E. E. and Koole, L. H. : The relationship between the antimicrobial effect of catheter coatings containing silver nanoparticles and the coagulation of contacting blood. Biomaterials 30, 3682 (2009). https://doi.org/10.1016/j.biomaterials.2009.03.054
  15. Choi, J., Reipa, V., Hitchins, V. M., Goering, P. L. and Malinauskas, R. A. : Physicochemical characterization and in vitro hemolysis evaluation of silver nanoparticles. Toxicol. Sci. 123, 133 (2011). https://doi.org/10.1093/toxsci/kfr149
  16. Zook, J. M., Maccuspie, R. I., Locascio, L. E., Halter, M. D. and Elliott, J. T. : Stable nanoparticle aggregates/agglomerates of different sizes and the effect of their size on hemolytic cytotoxicity. Nanotoxicology 5, 517 (2011). https://doi.org/10.3109/17435390.2010.536615
  17. Tang, J. and Xi, T. : Status of biological evaluation on silver nanoparticles. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 25, 958 (2008).
  18. Asharani, P. V., Lian Wu, Y., Gong, Z. and Valiyaveettil, S. : Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19, 255102 (2008). https://doi.org/10.1088/0957-4484/19/25/255102
  19. Jun, E. A., Lim, K. M., Kim, K., Bae, O. N., Noh, J. Y., Chung, K. H. and Chung, J. H. : Silver nanoparticles enhance thrombus formation through increased platelet aggregation and procoagulant activity. Nanotoxicology 5, 157 (2011). https://doi.org/10.3109/17435390.2010.506250
  20. Ragaseema, V. M., Unnikrishnan, S., Kalliyana Krishnan, V. and Krishnan, L. K. : The antithrombotic and antimicrobial properties of PEG-protected silver nanoparticle coated surfaces. Biomaterials 33, 3083 (2012). https://doi.org/10.1016/j.biomaterials.2012.01.005
  21. Shrivastava, S., Bera, T., Singh, S. K., Singh, G., Ramachandrarao, P. and Dash, D. : Characterization of antiplatelet properties of silver nanoparticles. ACS Nano 3, 13571364 (2009).
  22. Stalker, T. J., Newman, D. K., Ma, P., Wannemacher, K. M. and Brass, L. F. : Platelet signaling. Handb. Exp. Pharmacol. 210, 59 (2012).
  23. Dyszkiewicz-Korpanty, A. M., Frenkel, E. P. and Sarode, R. : Approach to the assessment of platelet function: comparison between optical-based platelet-rich plasma and impedancebased whole blood platelet aggregation methods. Clin. Appl. Thromb. Hemost. 11, 25 (2005). https://doi.org/10.1177/107602960501100103
  24. Elwood, P. C., Beswick, A. D., Sharp, D. S., Yarnell, J. W., Rogers, S. and Renaud, S. : Whole blood impedance platelet aggregometry and ischemic heart disease. The caerphilly collaborative heart disease study. Arteriosclerosis 10, 1032 (1990). https://doi.org/10.1161/01.ATV.10.6.1032
  25. Deb, S., Raja, S. O., Dasgupta, A. K., Sarkar, R., Chattopadhyay, A. P., Chaudhuri, U., Guha, P. and Sardar, P. : Surface tunability of nanoparticles in modulating platelet functions. Blood Cells Mol. Dis. 48, 36 (2012). https://doi.org/10.1016/j.bcmd.2011.09.011
  26. Corbalan, J. J., Medina, C., Jacoby, A., Malinski, T. and Radomski, M. W. : Amorphous silica nanoparticles aggregate human platelets: potential implications for vascular homeostasis. Int. J. Nanomedicine. 7, 631 (2012). https://doi.org/10.2217/nnm.12.38
  27. Radomski, A., Jurasz, P., Alonso-Escolano, D., Drews, M., Morandi, M., Malinski, T. and Radomski, M. W. : Nanoparticleinduced platelet aggregation and vascular thrombosis. Br. J. Pharmacol. 146, 882 (2005). https://doi.org/10.1038/sj.bjp.0706386
  28. Deb, S., Patra, H. K., Lahiri, P., Dasgupta, A. K., Chakrabarti, K. and Chaudhuri, U. : Multistability in platelets and their response to gold nanoparticles. Nanomedicine 7, 386 (2011).
  29. Li, X., Lenhart, J. J. and Walker, H. W. : Aggregation kinetics and dissolution of coated silver nanoparticles. Langmuir. 28, 1095 (2012). https://doi.org/10.1021/la202328n
  30. Knöfler, R., Urano, T., Malyszko, J., Takada, Y. and Takada, A. : In vitro effect of endothelin-1 on collagen, and ADP-induced aggregation in human whole blood and platelet rich plasma. Thromb. Res. 77, 69 (1995). https://doi.org/10.1016/0049-3848(95)90866-E
  31. Tenzer, S., Docter, D., Rosfa, S., Wlodarski, A., Kuharev, J., Rekik, A., Knauer, S. K., Bantz, C., Nawroth, T., Bier, C., Sirirattanapan, J., Mann, W., Treuel, L., Zellner, R., Maskos, M., Schild, H. and Stauber, R. H. : Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano. 5, 7155 (2011). https://doi.org/10.1021/nn201950e
  32. Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P. and Dash, D. : Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18, 225103 (2008).