Overexpression of FGFR3 mRNA and Mutational Analysis of FGFR3 Gene in Hepatocellular Carcinoma

간암에서 FGFR3 mRNA의 과발현과 FGFR3 유전자의 돌연변이 분석

  • Chang, Young Gyoon (Department of Pathology, College of Medicine, The Catholic University of Korea) ;
  • Bae, Hyun Jin (Department of Pathology, College of Medicine, The Catholic University of Korea) ;
  • Nam, Suk Woo (Department of Pathology, College of Medicine, The Catholic University of Korea)
  • 장영균 (가톨릭대학교 의과대학 병리학교실) ;
  • 배현진 (가톨릭대학교 의과대학 병리학교실) ;
  • 남석우 (가톨릭대학교 의과대학 병리학교실)
  • Received : 2012.09.10
  • Accepted : 2012.11.29
  • Published : 2012.12.31

Abstract

FGFR3 is a member of the fibroblast growth factor receptor family which interacts with fibroblast growth factors, setting in motion a cascade of downstream signals, ultimately influencing mitogenesis and differentiation. This particular family member binds acidic and basic fibroblast growth hormone and plays a role in bone development and maintenance. Accumulated evidence suggests that aberrant regulation of FGFR3 and genetic alterations are implicated in the development and progression of various cancers. Despite a high incidence of FGFR3 over-expression, no such investigation has been performed in hepatocellular carcinoma. Thus, we investigated genetic alterations of the FGFR3 gene in 73 cases of hepatocellular carcinoma by single-strand conformational polymorphism (SSCP) and sequencing. One silent mutation (A369A) was found in the extracellular domain of FGFR3, and one genetic alteration in the immunoglobulin-like III domain of FGFR3 appeared to be polymorphism. Taken together, we concluded that over-expression of FGFR3 in hepatocellular carcinoma is not associated with genetic alterations of FGFR3 gene, and we suggest that there could be another underlying mechanism of aberrant FGFR3 expression in hepatocellular carcinoma.

Keywords

Acknowledgement

Supported by : 가톨릭 암진화연구센터

References

  1. Song, J., Kim, C. J., Cho, Y. G., Kim, S. Y., Nam, S. W., Lee, S. H., Yoo, N. J., Lee, J. Y. and Park, W. S. : Genetic and epigenetic alterations of the KLF6 gene in hepatocellular carcinoma. Journal of Gastroenterology and Hepatology 21, 1286 (2006). https://doi.org/10.1111/j.1440-1746.2006.04445.x
  2. Villanueva, A., Newell, P., Chiang, D. Y., Friedman, S. L. and Llovet, J. M. : Genomics and signaling pathways in hepatocellular carcinoma. Seminars in Liver Disease. 27, 55 (2007). https://doi.org/10.1055/s-2006-960171
  3. Sahadevan, K., Darby, S., Leung, H. Y., Mathers, M. E., Robson, C. N. and Gnanapragasam, V. J. : Selective overexpression of fibroblast growth factor receptors 1 and 4 in clinical prostate cancer. J. Pathol. 213, 82 (2007). https://doi.org/10.1002/path.2205
  4. Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E. and Forman, D. : Global cancer statistics. CA Cancer J. Clin. 61, 69 (2011). https://doi.org/10.3322/caac.20107
  5. Whittaker, S., Marais, R. and Zhu, A. X. : The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene. 29, 4989 (2010). https://doi.org/10.1038/onc.2010.236
  6. de La Coste, A., Romagnolo, B., Billuart, P., Renard, C. A., Buendia, M. A., Soubrane, O., Fabre, M., Chelly, J., Beldjord, C., Kahn, A. and Perret, C. : Somatic mutations of the betacatenin gene are frequent in mouse and human hepatocellular carcinomas. Proceedings of the National Academy of Sciences of the United States of America. 95, 8847 (1998). https://doi.org/10.1073/pnas.95.15.8847
  7. Pang, A., Ng, I. O., Fan, S. T. and Kwong, Y. L. : Clinicopathologic significance of genetic alterations in hepatocellular carcinoma. Cancer Genetics and Cytogenetics 146, 8 (2003). https://doi.org/10.1016/S0165-4608(03)00103-1
  8. Satoh, S., Daigo, Y., Furukawa, Y., Kato, T., Miwa, N., Nishiwaki, T., Kawasoe, T., Ishiguro, H., Fujita, M., Tokino, T., Sasaki, Y., Imaoka, S., Murata, M., Shimano, T., Yamaoka, Y. and Nakamura, Y. : AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virusmediated transfer of AXIN1. Nature Genetics. 24, 245 (2000). https://doi.org/10.1038/73448
  9. McKeehan, W. L., Wang, F. and Kan, M. : The heparan sulfatefibroblast growth factor family: diversity of structure and function. Prog. Nucleic. Acid Res. Mol. Biol. 59, 135 (1998).
  10. Eswarakumar, V. P., Lax, I. and Schlessinger, J. : Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 16, 139 (2005). https://doi.org/10.1016/j.cytogfr.2005.01.001
  11. Hafner, C., Vogt, T. and Hartmann, A. : FGFR3 mutations in benign skin tumors. Cell Cycle. 5, 2723 (2006). https://doi.org/10.4161/cc.5.23.3509
  12. Qiu, W. H., Zhou, B. S., Chu, P. G., Chen, W. G., Chung, C.,Shih, J., Hwu, P., Yeh, C., Lopez, R. and Yen, Y. : Overexpression of fibroblast growth factor receptor 3 in human hepatocellular carcinoma. World J. Gastroenterol. 11, 5266 (2005). https://doi.org/10.3748/wjg.v11.i34.5266
  13. Kompier, L. C., Lurkin, I., van der Aa, M. N., van Rhijn, B. W., van der Kwast, T. H. and Zwarthoff, E. C. : FGFR3, HRAS, KRAS, NRAS and PIK3CA mutations in bladder cancer and their potential as biomarkers for surveillance and therapy. PLoS One. 5, e13821 (2010). https://doi.org/10.1371/journal.pone.0013821
  14. Bodoor, K., Ghabkari, A., Jaradat, Z., Alkhateeb, A., Jaradat, S., Al-Ghazo, M. A., Matalka, I., Musleh, H. and Haddad, Y. : FGFR3 mutational status and protein expression in patients with bladder cancer in a Jordanian population. Cancer Epidemiol. 34, 724 (2010). https://doi.org/10.1016/j.canep.2010.05.003
  15. Tomlinson, D. C., Hurst, C. D. and Knowles, M. A. : Knockdown by shRNA identifies S249C mutant FGFR3 as a potential therapeutic target in bladder cancer. Oncogene. 26, 5889 (2007). https://doi.org/10.1038/sj.onc.1210399
  16. Nam, S. W., Park, J. Y., Ramasamy, A., Shevade, S., Islam, A., Long, P. M., Park, C. K., Park, S. E., Kim, S. Y., Lee, S. H., Park, W. S., Yoo, N. J., Liu, E. T., Miller, L. D. and Lee, J. Y. : Molecular changes from dysplastic nodule to hepatocellular carcinoma through gene expression profiling. Hepatology 42, 809 (2005). https://doi.org/10.1002/hep.20878
  17. Cao, K., Liu, W., Nakamura, H., Enomoto, H., Yamamoto, T., Saito, M., Imanishi, H., Shimomura, S., Cao, P. and Nishiguchi, S. : Vitamin K2 downregulates the expression of fibroblast growth factor receptor 3 in human hepatocellular carcinoma cells. Hepatol Res. 39, 1108 (2009). https://doi.org/10.1111/j.1872-034X.2009.00536.x
  18. Onwuazor, O. N., Wen, X. Y., Wang, D. Y., Zhuang, L., Masih- Khan, E., Claudio, J., Barlogie, B., Shaughnessy, J. D., Jr. and Stewart, A. K. : Mutation, SNP, and isoform analysis of fibroblast growth factor receptor 3 (FGFR3) in 150 newly diagnosed multiple myeloma patients. Blood. 102, 772 (2003). https://doi.org/10.1182/blood-2003-04-1204
  19. Cappellen, D., De Oliveira, C., Ricol, D., de Medina, S., Bourdin, J., Sastre-Garau, X., Chopin, D., Thiery, J. P. and Radvanyi, F. : Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nat Genet. 23, 18 (1999).
  20. Rousseau, F., el Ghouzzi, V., Delezoide, A. L., Legeai-Mallet, L., Le Merrer, M., Munnich, A. and Bonaventure, J. : Missense FGFR3 mutations create cysteine residues in thanatophoric dwarfism type I (TD1). Hum Mol Genet. 5, 509 (1996). https://doi.org/10.1093/hmg/5.4.509
  21. Sibley, K., Cuthbert-Heavens, D. and Knowles, M. A. : Loss of heterozygosity at 4p16.3 and mutation of FGFR3 in transitional cell carcinoma. Oncogene. 20, 686 (2001). https://doi.org/10.1038/sj.onc.1204110
  22. Tavormina, P. L., Rimoin, D. L., Cohn, D. H., Zhu, Y. Z., Shiang, R. and Wasmuth, J. J. : Another mutation that results in the substitution of an unpaired cysteine residue in the extracellular domain of FGFR3 in thanatophoric dysplasia type I. Hum Mol. Genet. 4, 2175 (1995). https://doi.org/10.1093/hmg/4.11.2175
  23. Winterpacht, A., Hilbert, K., Stelzer, C., Schweikardt, T., Decker, H., Segerer, H., Spranger, J. and Zabel, B. : A novel mutation in FGFR-3 disrupts a putative N-glycosylation site and results in hypochondroplasia. Physiol. Genomics. 2, 9 (2000).
  24. Park, W. J., Bellus, G. A. and Jabs, E. W. : Mutations in fibroblast growth factor receptors: phenotypic consequences during eukaryotic development. Am. J. Hum. Genet. 57, 748 (1995).
  25. Hafner, C., van Oers, J. M., Vogt, T., Landthaler, M., Stoehr, R., Blaszyk, H., Hofstaedter, F., Zwarthoff, E. C. and Hartmann, A. : Mosaicism of activating FGFR3 mutations in human skin causes epidermal nevi. J. Clin. Invest. 116, 2201 (2006). https://doi.org/10.1172/JCI28163
  26. Superti-Furga, A., Eich, G., Bucher, H. U., Wisser, J., Giedion, A., Gitzelmann, R. and Steinmann, B. : A glycine 375-tocysteine substitution in the transmembrane domain of the fibroblast growth factor receptor-3 in a newborn with achondroplasia. Eur. J. Pediatr. 154, 215 (1995). https://doi.org/10.1007/BF01954274
  27. Rousseau, F., Bonaventure, J., Legeai-Mallet, L., Pelet, A., Rozet, J. M., Maroteaux, P., Le Merrer, M. and Munnich, A. : Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 371, 252 (1994). https://doi.org/10.1038/371252a0
  28. Shiang, R., Thompson, L. M., Zhu, Y. Z., Church, D. M., Fielder, T. J., Bocian, M., Winokur, S. T. and Wasmuth, J. J. : Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell. 78, 335 (1994). https://doi.org/10.1016/0092-8674(94)90302-6
  29. Deutz-Terlouw, P. P., Losekoot, M., Aalfs, C. M., Hennekam, R. C. and Bakker, E. : Asn540Thr substitution in the fibroblast growth factor receptor 3 tyrosine kinase domain causing hypochondroplasia. Hum Mutat. Suppl 1, S62 (1998).
  30. Grigelioniene, G., Hagenas, L., Eklof, O., Neumeyer, L., Haereid, P. E. and Anvret, M. : A novel missense mutation Ile538Val in the fibroblast growth factor receptor 3 in hypochondroplasia. Mutations in brief no. 122. Online. Hum Mutat. 11, 333 (1998).
  31. Mortier, G., Nuytinck, L., Craen, M., Renard, J. P., Leroy, J. G. and de Paepe, A. : Clinical and radiographic features of a family with hypochondroplasia owing to a novel Asn540Ser mutation in the fibroblast growth factor receptor 3 gene. J. Med. Genet. 37, 220 (2000). https://doi.org/10.1136/jmg.37.3.220
  32. Prinos, P., Costa, T., Sommer, A., Kilpatrick, M. W. and Tsipouras, P. : A common FGFR3 gene mutation in hypochondroplasia. Hum Mol Genet. 4, 2097 (1995). https://doi.org/10.1093/hmg/4.11.2097
  33. Rousseau, F., Saugier, P., Le Merrer, M., Munnich, A., Delezoide, A. L., Maroteaux, P., Bonaventure, J., Narcy, F. and Sanak, M. : Stop codon FGFR3 mutations in thanatophoric dwarfism type 1. Nat. Genet. 10, 11 (1995). https://doi.org/10.1038/ng0595-11