References
- Ahn, H. C. and Kim, K. J. (2009), Corporate Bond Rating Using Various Multiclass Support Vector Machines, Asia pacific journal of information systems, 19(2), 157-178.
- Angiulli, F. and Pizzuti, C. (2005), Outlier mining in large high-dimensional data sets, IEEE Transactions on Knowledge and Data Engineering, 17(2), 203-215. https://doi.org/10.1109/TKDE.2005.31
- Breunig, M. M., Kriegel, H. P., Ng, R. T., and Sander, J. (2000) LOF : identifying density-based local outliers, in Proceedings of the ACM SIGMOD 2000 International Conference on Management of Data, 93-104.
- Chiang, L. H., Russell, E. L., and Braatz, R. D. (2001), Fault detection and diagnosis in industrial systems, Springer-Verlag.
- Goodlin, B. E., Boning, D. S., Sawin, H. H., and Wise, B. M. (2003), Simultaneous Fault Detection and Classification for Semiconductor Manufacturing Tools, Journal of Electrochemical Society, 150(12), 778-784. https://doi.org/10.1149/1.1623772
- Han, A. H., Park, C. S., Kim, S. S., and Baek J. G. (2010), A Method to Adjust Cyclic Signal Length Using Time Invariant Feature Point Extraction and Matching (TIFEM), Journal of the Korea Society for Simulation, 19(4), 111-1222.
- Han, H. Y. (2009), Theory of pattern recognition, Hanbit media, 247-250.
- Harmeling, S., Dornhege, G., Tax, D., Meinecke, F., and Muller, K.-R. (2006), From outliers to prototypes: ordering data, Neurocomputing, 69(13-15), 1608-1618. https://doi.org/10.1016/j.neucom.2005.05.015
- Hsu, C.-W. and Lin, C.-J. (2002), A comparison of methods for multi-class support vector machines, IEEE Transactions on Neural Networks, 13, 415-425. https://doi.org/10.1109/72.991427
- Kang, S. P. and Cho, S. J. (2008), Locally Linear Reconstruction for Novelty detection, IE/MS.
- Kang, P. and Cho, S. (2009), A hybrid novelty score and its use in keystroke dynamics-based user authentication, Pattern Recognition, 42, 3115-3127. https://doi.org/10.1016/j.patcog.2009.04.009
- Knorr, E. M., Ng, R. T., and Tucakov, V. (2000), Distance-based outliers: Algorithms and applications, The VLDB Journal, 8(3/4), 237-253. https://doi.org/10.1007/s007780050006
- Kymal, C. and Patiyasevi, P. (2006), Semiconductor Quality Initiatives : How to maintain quality in this fast-changing industry, Quality Digest, 26(4), 43-48.
- Lee, J. H., Kim, J. H., Hwang, J. B., Kim, S. S. (2007), A Study on Fault Detection of Cycle-based Signals using Wavelet Transform, Journal of the Korea Society for Simulation, 16(4), 13-22.
- Montgomery, D. C. (1996), Introduction to statistical quality control, 3th edition, Johan Wiley and Sons, Inc.
- Park, J. H., Kwon, I. H., Kim, S. S., and Baek, J. G. (2011), Spline regression based feature extraction for semiconductor process fault detection using support vector machine, Expert Systems with Applications, 38(5), 5711-5718. https://doi.org/10.1016/j.eswa.2010.10.062
- Park, S. H., Kim, J. S., Kim, S. S., Park, C. S., and Baek, J. G. (2010), A Fault Detection of Cyclic Signals Using Support Vector Machine-Regression, KSQM, 354-362.
- Scholkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., and Williamson, R. C. (2001), Estimating the support of a high-dimensional distribution, Neural Computation, 13(7), 1443-1471. https://doi.org/10.1162/089976601750264965
- Sukchotrat, T., Kim, S. B., and Tstmg, F. (2010), One-Class Classification-based Control Charts for Multivariate Process Monitoring, lIE Transactions, 42, 107-120.
- Tax, D. M. J. (2001), One-class classification: concept - learning in the absence of counter-examples, PhD thesis, Delf University of Technology, The Netherlands.
- Wang, Q., Lopes, L. S., and Tax, D. M. (2004), Visual Object Recognition Through One-Class Learning, Lecture notes in computer science, 3211, 463-470.