DOI QR코드

DOI QR Code

Separation Heuristic for the Rank-1 Chvatal-Gomory Inequalities for the Binary Knapsack Problem

이진배낭문제의 크바탈-고모리 부등식 분리문제에 대한 발견적 기법

  • Lee, Kyung-Sik (Department of Industrial and Management Engineering, Hankuk University of Foreign Studies)
  • 이경식 (한국외국어대학교 산업경영공학과)
  • Received : 2011.11.25
  • Accepted : 2012.01.19
  • Published : 2012.06.01

Abstract

An efficient separation heuristic for the rank-1 Chvatal-Gomory cuts for the binary knapsack problem is proposed. The proposed heuristic is based on the decomposition property of the separation problem for the fixedcharge 0-1 knapsack problem characterized by Park and Lee [14]. Computational tests on the benchmark instances of the generalized assignment problem show that the proposed heuristic procedure can generate strong rank-1 C-G cuts more efficiently than the exact rank-1 C-G cut separation and the exact knapsack facet generation.

Keywords

References

  1. Achterberg, T., Koch, T., and Martin, A. (2003), MIPLIB 2003, Operations Research Letters, 34, 361-372.
  2. Avella, P., Boccia, M., and Vailyev, I. (2010), A computational study of exact knapsack separation for the generalized assignment problem, Computational Optimization and Applications, 45, 543-555. https://doi.org/10.1007/s10589-008-9183-8
  3. Balas, E. (1975), Facets of the knapsack polytope, Mathematical Programming, 8, 146-164. https://doi.org/10.1007/BF01580440
  4. Balas, E. and Zemel, E. (1978), Facets of the knapsack polytope from minimal covers, SIAM Journal on Applied Mathematics, 34, 119-148. https://doi.org/10.1137/0134010
  5. Beasley, J. E. (1990), OR-Library : Distributing test problems by electronic mail, Journal of the Operational Research Society, 41, 1069-1072. https://doi.org/10.1057/jors.1990.166
  6. CPLEX 9.1, http://www.ibm.com, 2007.
  7. Crowder, H., Johnson, E., and Padberg, M. (1983), Solving largescale 0-1 linear programming problems, Operations Research, 31, 803-834 https://doi.org/10.1287/opre.31.5.803
  8. Eisenbrand, F. (1999), On the Membership Problem for the Elementary Closure of a Polyhedron, Combinatorica, 19, 297-300. https://doi.org/10.1007/s004930050057
  9. Glover, F., Sherali, H. D., and Lee, Y. (1997), Generating Cuts from Surrogate Constraint Analysis for Zero-One and Multiple Choice Programming, Computational Optimization and Application, 8, 151-172. https://doi.org/10.1023/A:1008621204567
  10. Kaparis, K. and Letchford, A. N. (2010), Separation algorithms for 0-1 knapsack polytopes, Mathematical Programming, 124, 69-91. https://doi.org/10.1007/s10107-010-0359-5
  11. Klabjan, D., Nemhauser, G. L., and Tovey, C. (1998), The complexity of cover inequality separation, Operations Research Letters, 23, 35-40. https://doi.org/10.1016/S0167-6377(98)00025-X
  12. Lee, K. and Park, S. (2000), A Cut Generation Method for the (0, 1)-Knapsack Problem with a Variable Capacity, Journal of the Korean OR/MS Society, 25(3), 1-15.
  13. Nemhauser, G. L. and Wolsey, L. A. (1988), Integer and Combinatorial Optimization, Wiley.
  14. Park, K. and Lee, K. (2011), On the separation of the rank-1 Chvatal-Gomory Inequalities for the fixed-charge 0-1 knapsack problem, Journal of the Korean OR/MS Society, 36(2), 43-50.
  15. Xpress Optimizer 17.10.04, http://www.fico.com, 2007.