DOI QR코드

DOI QR Code

Prediction of Minimum Spontaneous Ignition Temperature(MSIT) of the Mixture of n-Pentanol and Ethylbenzene

n-Pentanol과 Ethylbenzene 혼합물의 최소자연발화온도의 예측

  • Ha, Dong-Myeong (Dept. of Occupational Health and Safety Engineering, Semyung University)
  • 하동명 (세명대학교 보건안전공학과)
  • Received : 2012.03.28
  • Accepted : 2012.04.26
  • Published : 2012.04.30

Abstract

The MSITs(Minimum Spontaneous Ignition Temperatures) or AITs(Autoignition Temperatures) describe the minimum temperature to which a substance must be heated, without the application of a flame or spark, which will cause that substance to ignite. This study measured the MSITs(Minimum Spontaneous Ignition Temperatures) of n-pentanol+ethylbenzene system by using ASTM E659 apparatus. The MSITs of pure n-pentanol and ethylbenzene were $285^{\circ}C$ and $475^{\circ}C$, respectively. The experimental MSITs of n-pentanol+ethylbenzene system were a in good agreement with the MSIT calculated by the proposed equations with a few A.A.D.(average absolute deviation).

최소자연발화온도는 가연성혼합물이 화염이나 스파크 없이 주위로부터 충분한 열에너지를 받아서 스스로 발화하는 최저온도를 말한다. 본 연구에서는 ASTM E659 장치를 이용하여 가연성 혼합물인 n-Pentanol+Ethylbenzene계를 구성하는 순수물질과 혼합물의 최소자연발화온도를 측정하였다. Pentanol과 Ethylbenzene의 측정된 최소자연발화온도는 각 각 $285^{\circ}C$, $475^{\circ}C$ 였다. 그리고 n-Pentanol+Ethylbenzene 계의 예측된 최소자연발화온도는 실험값과 적은 평균절대오차에서 일치하였다.

Keywords

References

  1. Babrauskas, V., Ignition Handbook, Fire Science Publishers, SFPE, (2003)
  2. Zabetakis, M.G., A.L. Furno and G.W. Jones, "Minimum Spontaneous Ignition Temperature of Combustibles in Air", Industrial and Engineering Chemistry, 46(10), 2173-2178, (1954) https://doi.org/10.1021/ie50538a047
  3. Cullis, C.F. and C.D. Foster, "Studies of the Spontaneous Ignition in the Air of Binary Hydrocarbon Mixtures", Combustion and Flame, 23, 347-356, (1974) https://doi.org/10.1016/0010-2180(74)90117-5
  4. Ha, D.M. and S.J. Lee, "Measurement of Autoignition Temperature of o-Xylene+n-Pentanol System", J. of the Korean Society of Safety, 21(4), 66-72, (2006)
  5. Ha, D.M., "Characteristics of Auto-ignition for Trichlorosliane and Dichlorosilane-Trichlorosliane Mixtures", J. of the Korean Institute of Gas, 14(4), 24-30, (2010)
  6. Goldfrab, I. and A. Zinoviev, "A Study of Delay Spontaneous Insulation Fires", Physics Letter, 311, 491-500, (2003) https://doi.org/10.1016/S0375-9601(03)00506-1
  7. Box, G.E.P. and N.R. Draper, Empirical Model-Building and Response Surface, John Wiley and Sons, Inc., (1987)
  8. Drysdale, D., An Introduction to Fire Dynamics, 2nd ed., Jone Wiley & Sons, (1998)
  9. Semenov, N.N., Some Problems in Chemical Kinetics and Reactivity, Vol. 2, Princeton University Press, Princeton, N.J.,(1959)
  10. NFPA, Fire Hazard Properties of Flammable Liquid, Gases, and Volatile Solids, NFPA 325M, NFPA, (1991)
  11. Kanury, A.M., SFPE Handbook of Fire Protection Engineering ; Ignition of Liquid Fuels, 2nd ed., SFPE, (1995)
  12. Lenga, R.E. and K.L. Votoupal, The Sigma Aldrich Library of Regulatory and Safety Data, Volume I-III, Sigma Chemical Company and Aldrich Chemical Company Inc., (1993)
  13. Lewis, R.J., SAX's Dangerous Properties of Industrial Materials, 11th ed., John Wiley & Son, Inc., N.J., (2004)
  14. Hilado, C.J. and S.W. Clark, "Autoignition Temperature of Organic Chemicals", Chemical Engineering, 4, 75-80, (1972)
  15. Jackson, J.L., "Spontaneous Ignition Temperature -Commercial Fluids and Pure Hydrocarbons-", Industrial and Engineering Chemistry, 43(12), 2869-2870, (1951) https://doi.org/10.1021/ie50504a058
  16. Scott, G.S., G.W. Jones and F.E. Scott, "Determination of Ignition Temperature of Combustible Liquids and Gases", Analytical Chemistry, 20(3), 238-241, (1948) https://doi.org/10.1021/ac60015a015

Cited by

  1. Measurement and Prediction of Autoignition Temperature of n-Butanol and sec-Butanol System vol.26, pp.5, 2012, https://doi.org/10.7731/KIFSE.2012.26.5.048
  2. A Study of Minimum Autoignition Temperature Behavior (MAITB) of Benzene and n-Hexane Mixture vol.27, pp.1, 2013, https://doi.org/10.7731/KIFSE.2013.27.1.008