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ABSTRACT

The present study was conducted to examine the generation of reactive oxygen species (ROS) during micromani-
pulation procedures in bovine somatic cell nuclear transfer (SCNT) embryos. Bovine enucleated oocytes were electro-
fused with donor cells, activated by a combination of Ca-ionophore and 6-dimethylaminopurine culture. Oocytes and 
embryos were stained in dichlorodihydrofluorescein diacetate or 3'-(p-hydroxyphenyl) fluorescein dye and the H2O2 
or ˙OH radical levels were measured. In vitro fertilization (IVF) was performed for controls. The samples were exa-
mined with a fluorescent microscope, and fluorescence intensity was analyzed in each oocyte and embryo. The H2O2 
and ˙OH radical levels of reconstituted oocytes were increased during manipulation (37.2~49.7 and 51.0~55.2 pixels, 
respectively) as compared to those of mature oocytes (p<0.05). During early in vitro culture, the ROS levels of SCNT 
embryos were significantly higher than those of IVF embryos (p<0.05). These results suggest that the cellular stress 
during micromanipulation procedures can generate the ROS in bovine SCNT embryos.
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INTRODUCTION        

Somatic cell nuclear transfer (SCNT) technique is an 
efficient tool to produce clone animals (Wilmut et al., 
1997), transgenic animals (Schnieke et al., 1997), and 
xenograftic animals (Lai et al., 2002), however, its effi-
ciency is still low and have many serious problems su-
ch as, high abnormality and prenatal and postnatal 
death (Garry et al., 1996). Some epigenetic modifications 
are considered to be reasons for these problems (Kang 
et al., 2001; Inoue et al., 2002; Xue et al., 2002). Howev-
er, other basic reasons might be responsible to these 
cytogenetic abnormalities as well as the low SCNT effi-
ciency. 

The development of SCNT embryos can be influen-
ced by a number of factors, such as recipient cytopl-
asm, donor cell cycle stage, activation condition, and so 
on (Choi et al., 2004). Further, the cellular stress that 
can be caused by the manipulations during SCNT pro-
cedures would also affect the reprogramming of SCNT 
embryos. Various cellular stresses generate reactive oxy-
gen species (ROS), such as hydrogen peroxide (H2O2), 

superoxide (̇ O2-), and hydroxyl radical (̇ OH) (Rh-
oads et al., 2006). This might result in serious damages 
of the cells (Aitken et al., 1989; Halliwell and Aruoma, 

1991; Yang et al., 1998; Rhoads et al., 2006). However, 
cellular stresses that were induced by SCNT procedures 
have not been noted. Recently, we reported that the 
ROS generation level of porcine parthenogenetic embr-
yos induced by activation treatment-derived stresses 
(Hwang et al., 2011). The present study was aimed at 
examining the ROS generation level during nuclear tr-
ansfer procedures in bovine SCNT embryos. 

MATERIALS AND METHODS

In Vitro Maturation of Oocytes 

Bovine cumulus-oocyte complexes (COCs) were aspi-
rated from follicles (2- to 7-mm diameter) of ovaries and 
subsequently washed in Tyrode's lactate-Hepes buffer 
containing 0.1% (w/v) polyvinyl alcohol (PVA; Sigma, 
St. Louis, MO, USA). About ten COCs were transferred 
into 50 μl droplets of maturation medium overlaid 
with paraffin oil and cultured for 20～22 h at 39℃ and 
5% CO2 in air. The culture medium for in vitro matura-
tion was Tissue Culture Medium 199 (TCM199; Gibco- 
BRL, Grand Island, NY, USA) supplemented with 10% 
fetal bovine serum (FBS; Gibco-BRL), 0.02 U/ml fol-
licle-stimulating hormone (Sigma), 1 μg/ml estradiol (Sig-
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ma), 50 μg/ml gentamicin (Sigma), and 0.2 mM Na- 
pyruvate (Sigma). 

Culture of Somatic Cells

Bovine ear skin fibroblast cells (4～6 passaged) from 
a Korean native cow were cultured in Dulbecco's modi-
fied Eagle’s medium (DMEM; Gibco-BRL) supplemen-
ted with 10% FBS, 0.2 mM Na-pyruvate (Sigma), and 
1% penicillin/streptomycin for 2～3 days to achieve ab-
out 70% confluency. Subsequently, the cells were fur-
ther cultured for 5 days in DMEM containing 0.5% FBS. 
Prior to use, the cells were trypsinized and then centri-
fuged in TCM199 medium supplemented with 3 mg/ml 
bovine serum albumin (BSA; Sigma).   

Nuclear Transfer 

SCNT was carried out in Hepes-buffered TCM199 (Gi-
bco-BRL) supplemented with 3 mg/ml BSA and 5 μg/ 
ml cytochalasin B (Sigma). After the in vitro maturation 
of COCs, the cumulus cells were removed by vortexing 
for 5 min in phosphate-buffered saline (PBS) supple-
mented with 0.1% (w/v) hyaluronidase (Sigma) and 
0.1% (w/v) PVA (Sigma). Prior to the enucleation, oo-
cytes were cultured in TCM199 containing 0.4 μg/ml 
demecolcine (Sigma) for 40 min in order to extrude 
their metaphase II (MII) chromosome mass. The enu-
cleation of oocytes was done by removing the MII ch-
romosome mass and the 1st polar body. A serum st-
arved donor cell was injected into the perivitelline spa-
ce of an enucleated recipient oocyte. 

Electrofusion and Activation 

Reconstructed oocytes were placed between two wire 
electrodes (1-mm apart) of a fusion chamber that was 
overlaid with 0.3 M mannitol solution containing 0.1 
mM MgSO4, 0.05 mM CaCl2, and 0.1% BSA. Fusion was 
induced with a single direct-current pulse of 1.3 kV/cm 
for 30 μsec using a BTX Electro Cell Manipulator 200 
(BTX, San Diago, CA, USA). Subsequent to the fusion 
treatment, the reconstituted oocytes were placed in CR1-
aa (Rosenkrans and First, 1991) containing 3 mg/ml 
BSA and checked for fusion. The fused oocytes were 
then activated using 10 μM Ca-ionophore (A23187; 
Sigma) for 5 min and subsequently cultured in CR1aa 
containing 3 mg/ml BSA and 2 mM 6-dimethylamino-
purine (DMAP, Sigma) for 3 h. 

In Vitro Fertilization (IVF)

Bovine COCs matured for 22 h were inseminated 
with frozen-thawed spermatozoa (2×10

6 spermatozoa/ 
ml) in a 50 μl drop of BO medium (Brackett and Oli-
phant, 1975) containing 5 mM caffeine (Sigma), 10 μg/ 
ml heparin (Sigma), and 3 mg/ml BSA at 39℃ and 5% 
CO2 in air for 6 h. 

In Vitro Culture of Embryos 

After activation or insemination culture, the SCNT 
and IVF embryos were further cultured in 50 μl drop 
(about 10 embryos per each drop) of CR1aa containing 
3 mg/ml BSA and 50 μg/ml gentamicin at 39℃ and 
5% CO2 in air prior to the analysis of ROS levels at 
the one-(12 h post fusion or insemination), two- (26 h 
post fusion or insemination), and four-cell (42 h post 
fusion or insemination) stages

Analysis of ROS Products

The recipient oocytes and reconstituted eggs in vari-
ous micromanipulation steps, and the SCNT and IVF 
embryos at the early developmental stages were stai-
ned in 10 μM dichlorodihydrofluorescein diacetate (H2-
DCFDA, Molecular Probes, Eugene, OR, USA) or 10 μ
M 3'-(p-hydroxyphenyl) fluorescein (HPF, Molecular Pro-
bes) each for 30 min at 39℃ for measuring the H2O2 
level (Hashimoto et al., 2000) or the ˙OH radical level 
(Setsukinai et al., 2003). After washing in PBS, the oo-
cytes and embryos were mounted onto the slide glass. 
The fluorescent images from the samples were re-
corded as JPEG files using a digital camera (Coolpix, 
Nikon, Japan) that was attached to a fluorescent micro-
scope (BX-50, Olympus, Japan) with filters at 450～480 
nm for excitation and at 515 nm for emission. The im-
ages were analyzed using ImageJ software 1.37 (NIH) 
by the intensity of fluorescence in each oocyte and 
embryo. 

Statistical Analysis 

Data were analyzed using ANOVA, followed by 
Duncan’s multiple-range tests using the Statistical Ana-
lysis System (SAS Institute, Inc., Cary, NC, USA). 

RESULTS

ROS Generation Levels during Manipulation Procedures

During micromanipulation, the H2O2 levels in recipi-
ent oocytes and SCNT embryos were increased by enu-
cleation (37.2±0.4 pixels/oocyte), electrofusion (49.7±1.3 
pixels/oocyte), and activation treatments (40.6±1.3 pix-
els/oocyte) in comparison with MII oocytes (33.1±0.7 
pixels/oocyte p<0.05), and the level of H2O2 was made 
extremely high immediately after electrofusion (Fig. 1). 
The ȮH radical level was significantly high during 
the manipulation procedures (51.0±0.6 to 55.2±1.4 pix-
els/oocyte) in comparison with MII oocytes (46.8±1.3 
pixels/oocyte, p<0.05, Fig. 2). 

ROS Generation Levels during Early In Vitro Culture of 

SCNT and IVF Embryos

During early in vitro culture, the H2O2 level of SCNT 
embryos was significantly high (p<0.05) at the one- 
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Fig. 1. Levels of H2O2 in bovine oocytes and SCNT eggs during 
micromanipulation. MII, metaphase II oocytes; DMAP, 2 mM 
6-dimethylaminopurine treatment. Seven replicates were perfor-
med for each of the groups (total 45～50 eggs in each group) 
used on the same day, thereby allowing direct comparisons be-
tween groups. Data are presented by mean±SEM (bars). 

a～d
 

Values with different letters differ significantly (p<0.05).

Fig. 2. Levels of ˙OH radical in bovine oocytes and SCNT eggs 
during micromanipulation. MII, metaphase II oocytes; DMAP, 2 
mM 6-dimethylaminopurine treatment. Seven replicates were per-
formed for each of the groups (total 45～50 eggs in each group) 
used on the same day, thereby allowing direct comparisons be-
tween groups. Data are presented by mean±SEM (bars). 

a～c
 Val-

ues with different letters differ significantly (p<0.05).

(32.4±1.1 pixels/embryo), two- (27.7±1.2 pixels/embryo), 
and four-cell stages (25.1±1.4 pixels/embryo) in compar- 
ison to IVF embryos (17.3±0.9, 22.0±1.5 and 16.5±1.2 pi-
xels/embryo, respectively, Fig. 3). In addition, the ȮH 
radical levels were also significantly high (p<0.05) in 
SCNT embryos (52.0±1.3, 33.4±1.0, and 26.9±1.1 pixels/ 
embryo, respectively) in comparison to IVF embryos 
(29.6±0.8, 26.0±0.8, and 20.7±2.7 pixels/embryo, respec-
tively) at the one-, two-, and four-cell stages (Fig. 4).

Fig. 3. Levels of H2O2 in bovine SCNT and IVF embryos during 
early in vitro development. Five replicates were performed for 
each of the embryonic stage (total 50～55 embryos in each 
group). The SCNT and IVF embryos were analyzed on the same 
day, thereby allowing direct comparisons between SCNT and IVF 
groups. Data are presented by mean±SEM (bars). 

a,b
 Values with 

different letters within each stage differ significantly (p<0.05).

Fig. 4. Levels of ˙OH radical in bovine SCNT and IVF embryos 
during early in vitro development. Five replicates were performed 
for each of the embryonic stage (total 50～58 embryos in each 
group). The SCNT and IVF embryos were analyzed on the same 
day, thereby allowing direct comparisons between SCNT and IVF 
groups. Data are presented by mean±SEM (bars). 

a,b
 Values with 

different letters within each stage differ significantly (p<0.05).

DISCUSSIONS

Reactive oxygen species (ROS) are metabolites of oxy-
gen. ROS generated under normal respiratory condi-
tions; however, it can be enhanced in response to a 
range of abnormal conditions, including exposure to va-
rious stresses (Rhoads et al., 2006). The H2O2 and ˙OH 
radicals are some typical ROS. In general, ROS levels 
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are difficult to measure accurately (Halliwell and Whi-
teman, 2004). In the present study, oocytes and em-
bryos were treated with two fluorescence dyes for de-
tecting intracellular ROS. The fluorescence dye H2-
DCFDA (Hashimoto et al., 2000) was used for detecting 
H2O2. The fluorescence dye HPF (Setsukinai et al., 
2003), which is mainly used for detecting ȮH radicals, 
was also used in this study. HPF yields a fluorescein 
selectively when reacting with ȮH radicals but not oth-
er ROS (Indo et al., 2007).

In the present study the ROS levels of MII oocytes 
were found to be high, which was probably owing to 
the high oxygen tension and glucose (Ali et al., 2003; 
Kitagawa et al., 2004). However, it has been suggested 
that the MII oocytes normally have a high level of 
ROS. During in vitro maturation of oocytes, ROS plays 
a role in the induction of oocyte nuclear and/or cyto-
plasmic maturation near ovulation (Blondin et al., 1997). 
It has also been suggested that high levels of ROS 
might produce oocyte meiotic arrest (Downs and Ma-
stropolo, 1994). Micromanipulation procedures, such as 
enucleation, electrofusion, and activation can cause ex-
treme stress to the oocytes and generate ROS in the 
cytoplasm. In the present study, the ROS generation le-
vels were increased during micromanipulation procedu-
res, especially by electrofusion and activation, and re-
duced gradually during DMAP treatment and early in 
vitro development. Regardless of the reduction of ROS 
level, the ROS levels of SCNT embryos were as high 
as ever in comparison to IVF embryos. In the present 
study, we did not evaluate the development and ROS 
level in the later stage embryos, because we placed the 
focus on the evaluation of the effects of mechanical 
stresses during SCNT procedure on the ROS generation 
and cellular damages. As the same reason, we also 
used the 20% O2 for experiments, which conventional 
O2 tension in SCNT experiments. ROS levels in the lat-
er stage of embryos can be affected by in vitro culture 
system (Ali et al., 2003; Kitagawa et al., 2004). 

An electric pulse induced ROS generation in various 
types of cells (Bobanović et al., 1992; Gabriel and 
Teissié, 1994) and embryos (Koo et al., 2008). Koo et al. 
(2008) reported that greater ROS were induced in por-
cine embryos subsequent to the electrical activation of 
oocytes in comparison to IVF embryos. Furthermore, ROS 
generation in embryos after electrical activation was 
found to be significantly increased by higher intensity 
and longer duration electrical pulses. Nevertheless, the 
mechanism of ROS generation induced by electric pulse 
is unclear, and increased lipid peroxidation in mem-
branes by electric pulse is regarded as an important cau-
se of ROS generation (Maccarrone et al., 1995). Further, 
calcium ion can affect ROS generation. Elevated intra-
cellular calcium has been shown to enhance ROS pro-
duction in intact cultured cells (Przygodzki et al., 2005). 
In the mammalian cells it was found that when the cy-

tosolic Ca2+ concentration was elevated, NADPH oxi-
dase 5 generated large amounts of ROS (Banfi et al., 
2001). Also, excessive mitochondrial Ca2+ accumulation 
has been extensively associated with mitochondrial oxi-
dative stress and can increase mitochondrial ROS for-
mation (Brookes et al., 2004). Ca2+ could act directly on 
the mitochondrial membrane, changing its properties 
and leading to enhanced ROS generation (Grijalba et 
al., 1999). 

In conclusion, the result of the present study sug-
gests that the cellular stress during micromanipulation 
procedures can generate the ROS in bovine SCNT em-
bryos, which may lead the cellular damages in bovine 
SCNT embryos. Further study is needed to estimate the 
mitochondrial and DNA damages of SCNT embryos in-
duced by micromanipulation-derived ROS generation.
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