DOI QR코드

DOI QR Code

경주시 양북면 단층각력대에서 산출하는 로몬타이트와 아듈라리아의 광물학적 특징과 후기 단층활동

Mineralogical Characteristics of Hydrothermal Laumontite and Adularia in the Breccia Zone of a Fault, Yangbuk-myeon, Gyeongju and Implications for Fault Activity

  • 추창오 (경북대학교 지질학과) ;
  • 장윤득 (경북대학교 지질학과) ;
  • 장천중 (한국수력원자력(주) 중앙연구원 부지재해평가팀)
  • 투고 : 2012.03.20
  • 심사 : 2012.03.27
  • 발행 : 2012.03.31

초록

경주시 양북면 단층대의 각력암에서 로몬타이트와 아듈라리아가 산출되는데, 이들의 형태적 특징은 단층활동과 관련된 열수와의 반응으로 형성되었음을 지시한다. 로몬타이트의 산출은 충분한 물이 존재하는 각력대에 알칼리원소가 풍부하게 공급되었음을 의미한다. 로몬타이트는 신장된 주상형의 결정이 특징적인데 길이와 폭의 비는 대부분 5~10 : 1 범위이다. 자형의 로몬타이트, 아듈라리아는 Ca-사장석을 교대하거나, 유체로부터 침전되어 이차적으로 형성되었는데, 최후기 단계에서 비교적 빠르게 형성되었다. 단층파쇄작용으로 인해 투수성이 높아진 화강암질 모암은 열수와 반응하여 Ca, K와 같은 알칼리원소를 용탈시켰으며, 중성-약알칼리성의 열수용액으로부터 각력대에 로몬타이트, 아듈라리아가 침전되었다. 단층파쇄대에서 흔히 발달하는 로몬타이트와 아듈라리아와 같은 저온성 변질광물의 형성과정과 성인은 천열수광상에서 흔히 일어나는 모암변질, 열수반응과 유사하다. 단층대에서 생성되는 저온성, 이차적 아듈라리아의 형태적 특징과 화학조성은 조암광물의 K-장석류와 구분되므로 국내의 단층대에서 흔히 산출하는 K-장석은 아듈라리아일 가능성이 높다.

Morphological and mineralogical characteristics of laumontite and adularia in the breccia zone in a fault, Yangbuk-myeon, Gyeongju, Korea suggest that they formed by reaction with hydrothermal alteration related to fault activity. Laumontite commonly occurring in the breccia zone is related to the presence of hydrothermal fluids bearing alkaline elements in the zone. Laumonite is characterized by elongated columnar form with aspect ratio varying 5~10. Laumontite and adularia whose characteristic euhedral forms are indicative of the latest product formed as rapid precipitation from fluids or replacements of Ca-plagioclase. Hydrothermal fluids reacted with intensively fractured granite, typical with high permeability, leached alkaline elements such as Ca, K, allowing laumontite and adularia to be precipitated under neutral to weak alkaline conditions. It is noteworthy that the formation process and genesis of low temperature minerals such as laumontite and adularia are very similar to those formed by wallrock alteration or hydrothermal alteration that occurred in epithermal deposits. Taking into account its characteristic morphology and chemistry, authigenic K-feldspar that commonly forms at low temperature in many fault zones must be adularia.

키워드

참고문헌

  1. 김건영, 고용권, 최병영, 신선호, 김두행 (2008) 중, 저준 위 방사성폐기물 처분부지의 지구화학 특성 II. 암석 및 광물. 방사성폐기물학회지, 6, 307-327.
  2. 박성민, 강한, 장윤득, 임창복, 김정진 (2007) 제4기 입실 단층 파쇄대에서 나타나는 단층점토의 산출상태에따른 광물조성 연구: 고해상도분말회절 분석을 중심으로. 광물학회지, 20, 83-89.
  3. 유장한(2008) 우리나라 동부 젊은 단층대에서 산출되는 일부 저변성광물류와 중요성. 2008 한국암석학회 ․ 한국광물학회 공동학술발표회 논문집, 167-170.
  4. 유장한, 김용욱 (2009) 우리나라 동해안 인접 젊은 단층대의 저변성광물류와 그 중요성. 2009 자원환경지질학회, 지질공학회, 지질학회, 석유지질학회 공동학술발표회 243-244.
  5. 이석훈, 정창식, 손병국, 임창복 (2000) 울산단층대 신기 단층 비지의 광물학적 특성 및 생성환경, 2000년 한국암석학회, 한국광물학회 공동학술발표회 논문집, 46-49.
  6. 이영민, 김종찬, 구민호, 김영석(2009) 단층대에서의 열- 수리적 거동 모델링. 자원환경지질학회지, 42, 609-618.
  7. 이창섭, 이효민 (2009) 양산단층을 통과하는 복안터널구간의 열수변질작용과 공학적 특성. 한국광물학회지, 22, 13-22.
  8. 장태우, 추창오 (1998) 동래단층 지역 단층비지의 생성 과정과 K-Ar 연령. 지질공학회지, 8, 175-188.
  9. 장태우, 채연준 (2004) 울산단층 동부지역 제4기단층 비지대에서 단층작용과 열수활동. 대한지질학회지, 40, 469-479.
  10. 장태우, 장윤득 (2008) 단층비지대의 성장: 경주시 양북면 부근의 사례. 지질공학회지, 18, 135-143.
  11. 추창오, 장태우, 장천중, 김수정, 장윤득 (2011) 경주시 양북면 단층대에서의 로몬타이트의 산출특징과 단층 활동 환경에 대한 고찰. 춘계지질과학기술 공동학술대회 논문집. 226.
  12. Akizuka, M. and Sunagawa, I. (1978) Study of the sector structures in adularia by means of optical microscopy, infra-red absorption, and electron microscopy. Min. Mag., 42, 453-462. https://doi.org/10.1180/minmag.1978.042.324.07
  13. Gudmundsson, B.T. and Arnόrrsson, S. (2005) Secondary mineral-.fluid equilibria in the Kraflaand N$\alpha$ mafjall geothermal systems, Iceland. Appl. Geochem., 20, 1607-1625. https://doi.org/10.1016/j.apgeochem.2005.04.020
  14. Browne, P.R.L. (1978) Hydrothermal alteration in active geothermal fields. Ann. Rev. Earth Planet. Sci., 6, 229-250. https://doi.org/10.1146/annurev.ea.06.050178.001305
  15. Buchanan, L.J. (1981) Precious metal deposits associated with volcanic environments in the Southwest. In: Dickinson, W.R. (eds.) Relations of tectonics to ore deposits in the South Cordillera. Arizona Geological Society Digest, 14, 237-262.
  16. Cerny, P. and Chapman, R. (1984) Paragenesis, chemistry and structural state of adularia from granitic pegmatites. Bull. Min., 107, 369-384.
  17. Cerny, P. and Chapman, R. (1986) adularia from hydrothermal vein deposits: extremes in structural state. Can. Min., 24, 717-728.
  18. Choo, C.O. and Chang, T.W. (2000) Characteristics of clay minerals in gouges of the Dongrae Fault, Southeastern Korea, and implications for fault activity. Clay Clay Min., 48, 204-212. https://doi.org/10.1346/CCMN.2000.0480206
  19. Crossey, L.J., Frost, B.R., and Surdam, R.C. (1984) Secondary porosity in laumontite-bearing sandstones: Part 2. Aspects of porosity modification. AAPG Special Volumes, 37, Clastic Diagenesis, 225-237.
  20. Deer, W.A., Howie, R.A., Wise, W.S., and Zussman, J. (2006) Rock-Forming Minerals, Vol. 4B: Framework Silicates-Silica Minerals, Feldspathoids and Zeolites. Geol. Soc. London. 2nd ed., 982p.
  21. Dong, G. and Morrison, G.W. (1995) Adularia in epithermal veins, Queensland: morphology, structural state and origin. Miner. Depos., 30, 11-19.
  22. Ghobarkar, H. and Schaf, O. (1998) Hydrothermal synthesis of laumontite, a zeolite. Micropor. Mesopor. Mat., 23, 55-60. https://doi.org/10.1016/S1387-1811(98)00045-6
  23. Goddard, J.V. and Evans, J.P. (1995) Chemical changes and fluid-rock interaction in faults of crystalline thrust sheets, northwestern Wyoming, U.S.A. J. Struct. Geol., 17, 533-547. https://doi.org/10.1016/0191-8141(94)00068-B
  24. Hedenquist, J.W. and Lowenstern, J.B. (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature, 370, 519-527. https://doi.org/10.1038/370519a0
  25. Henley, R.W. (1985) The geothermal framework of epithermal deposits. In: Berger, B.R. and Bethke, P.M. (eds.), Geology and Geochemistry of Epithermal Systems. Reviews in Economic Geology, Vol. 2, Soc. Econ. Geol., 1-24.
  26. Herald, P., Foley, N.K., and Hayba, D.O. (1987) Comparative anatomy of volcanic-hosted epithermal deposits: acid-sulfate and adularia-sericite types. Econ. Geol., 82, 1-26. https://doi.org/10.2113/gsecongeo.82.1.1
  27. Liou, J.G. (1971) Stilbite-laumontite equilibrium. Contrib. Mineral. Petrol., 31, 171-177. https://doi.org/10.1007/BF00399649
  28. McCulloh, T.H., Frizzell Jr., V.A., Stewart, R.J., and Barnes, I. (1981) Precipitation of laumontite with quartz, thenardite, and gypsum at Sespe hot springs, western transverse ranges, California. Clay Clay Min., 29, 353-364. https://doi.org/10.1346/CCMN.1981.0290505
  29. Reed, M.H. and Spycher, N.F. (1985) Boiling, cooling, and oxidation in epithermal system: a numerical modelling approach. In: Berger, B.R., Bethke, P.M. (eds.) Geology and Geochemistry of Epithermal Systems. Rev. Econ. Geol., 2, 249-272
  30. Reynolds, D. (1929) Some new occurrences of authigenic potash feldspars. Geol. Mag., 66, 390-399.
  31. Sibson, R.H., Moore, J.M., and Rankin, A.H. (1975) Seismic pumping a hydrothermal fluid transport mechanism. Jour. Geol. Soc. London, 131, 653-659. https://doi.org/10.1144/gsjgs.131.6.0653
  32. Silver, L.T. and James, E.W. (1988) Geologic setting and lithologic column of the Cajon Pass deep drillhole. Geophys. Res. Lett., 15, 941-944. https://doi.org/10.1029/GL015i009p00941
  33. Smith, J.V. (1974) Feldspar Minerals. I. Crystal structure and physical properties. New York, Springer- Verlag, 1627p.
  34. Steiner, A. (1970) Genesis of hydrothermal K-feldspar (adularia) in an active geothermal environment at Wairakei, New Zealand. Min. Mag., 37, 916-922. https://doi.org/10.1180/minmag.1970.037.292.07
  35. Tanaka, H., Uehara, N., and Itaya, T. (1995) Timing of cataclastic deformation along the Akaishi Tectonic Line, central Japan. Contrib. Mineral. Petrol., 120, 150-158. https://doi.org/10.1007/BF00287112
  36. Vincent, M.W. and Ehlig, P.L. (1988) Laumontite mineralization in rocks exposed north of San Andreas Fault at Cajon Pass, southern California. Geophys. Res. Lett., 15, 977-980. https://doi.org/10.1029/GL015i009p00977
  37. Weisenbergner, T. and Bucher, K. (2010) Zeolites in fissures of granites and gneisses of the Central Alps. J. Metamorph. Geol., 28, 825-847. https://doi.org/10.1111/j.1525-1314.2010.00895.x
  38. White, A.F. and Brantley, S.L. (1995) Chemical weathering rates of silicate minerals: An overview. In: White, A.F. and Brantley, S.L. (eds), Chemical Weathering Rates of Silicate Minerals, Reviews in Mineralogy, Vol. 31, Mineral. Soc. America, 1-22.
  39. Zhou, L., Guo, J., Liu, B., and Jiugao1, Li, L. (2001) Structural state of adularia from Hishikari, Japan. Chin. Sci. Bull., 46, 950-953. https://doi.org/10.1007/BF02900474

피인용 문헌

  1. Estimation of Groundwater Level Fluctuation of the Crystalline site Using Time Series Analyses in South Korea vol.11, pp.3, 2013, https://doi.org/10.7733/jnfcwt-k.2013.11.3.179
  2. Chemical Behaviors of Elements and Mineral Compositions in Fault Rocks from Yangbuk-myeon, Gyeongju City, Korea vol.22, pp.2, 2013, https://doi.org/10.7854/JPSK.2013.22.2.137
  3. Sulfur Isotope Variations of Metallic Ore Deposits in the Gyeongsang Basin, South Korea vol.65, pp.3, 2015, https://doi.org/10.1111/rge.12072