DOI QR코드

DOI QR Code

Solubilities and Major Species of Selenium and Technetium in the KURT Groundwater Conditions

KURT 지하수 조건에서 셀레늄과 테크네튬의 용해도 및 주요 화학종

  • Received : 2011.11.21
  • Accepted : 2012.02.09
  • Published : 2012.03.30

Abstract

The long-lived fission products $^{79}Se$ and $^{99}Tc$ have been considered as the major concern nuclides for the disposal of radioactive waste because of their high solubilities and the existence of anionic species in natural water. In this study, the solubilities of $FeSe_2(s)$ and $TcO_2(s)$, known as respective Solubility Limiting Solid Phase (SLSP) of selenium and technetium, were measured in the KURT (KAERI Underground Research Tunnel) groundwater under various pH and redox conditions. And their solubilities and major species were also calculated using geochemical codes under conditions similar to experimental solutions. Experimental results and calculation for $FeSe_2$ show that the solubility of selenium was found to be below $1{\times}10^{-6}mol/L$ under the condition of pH 8~9.5 and Eh=-0.3~-0.4 V while the dominant species was identified as $HSe^-$. For $TcO_2$, the solubility of technetium was found to be $5{\times}10^{-8}{\sim}1{\times}10^{-9}mol/L$ in the solutions of pH 6~9.5 and Eh<-0.1 V, while the dominant species was $TcO(OH)_2$. However, when the Eh of the solution is -0.35 V, $TcO(OH)_3^-$ and $TcO_4^-$ are calculated as the dominant species at pH 10.5~12 and pH>12, respectively.

장수명 핵분열생성물인 $^{79}Se$$^{99}Tc$는 자연수 중에서 용해도가 클 뿐더러 음이온으로 존재하여 방사성폐기물 처분장에서 주요 관심핵종들로 고려되고 있다. 본 연구에서는 KURT 지하수의 다양한 pH와 산화-환원 조건에서 셀레늄과 테크네튬의 Solubility Limiting Solid Phase (SLSP)로 알려진 $FeSe_2$$TcO_2$의 용해도를 측정하였다. 또한, 지화학코드를 이용하여 실험과 유사조건에서 이들의 용해도와 주요 화학종을 계산하였다. 실험 및 계산으로부터 pH 8~9.5와 Eh=-0.3~-0.4 V 조건에서 $FeSe_2$의 용해도는 $1{\times}10^{-6}mol/L$이하이며, 주 용해 화학종은 HSe-로 판단된다. $TcO_2(s)$의 경우는 pH 6~9.5와 Eh<-0.1 V 영역에서 용해도와 주 용해 화학종이 각각 $5{\times}10^{-8}{\sim}1{\times}10^{-9}mol/L$$TcO(OH)_2$로 나타났지만, Eh=-0.35 V조건에서는 주 용해화학종이 pH가 10.5~12와 12이상에서 각각 $TcO(OH)_3^-$$TcO_4^-$로 계산되었다.

Keywords

References

  1. Min-Hoon Baik, Jae-kwang Lee and Jong-Won Choi, "Research Status on the Radionuclide and Colloid Migration in Underground,"Journal of the Korean Radioactive Waste Society, 7(4), pp. 243-253 (2009).
  2. Y. S. Hwang and C. H. Kang, "The Development of a Safety Assessment Approach and Its Implication on the Advanced Nuclear Fuel Cycle," Nucl. Eng. Technol., 42(1), pp. 37-46 (2010). https://doi.org/10.5516/NET.2010.42.1.037
  3. A.C. Scheinost, R. Kirsch, D. Banerjee, A. Fernandez-Martinez, H. Zaenker, H. Funke and L. Charlet, "X-ray Absorption and Photoelectron Spectroscopy Investigation of Selenite Reduction by Fe(II)-bearing Minerals," Contaminant Hydrology, 102, pp. 228-245 (2008). https://doi.org/10.1016/j.jconhyd.2008.09.018
  4. M. Rovira, J. Gim?nez, M. Martinez, X. Martinez-Llado, J. de Pablo and V. Marti, "Sorption of Selenium(IV) and Selenium(VI) onto Natural Iron Oxides: Goethite and Hematite," J. Hazardous Materials, 150, pp. 279-284 (2007).
  5. Y. Iida, T. Yamaguchi, T. Tanaka and S. Nakayama, "Solubility of Selenium at High Ionic Strength under Anoxic Conditions," J. Nucl. Sci. Tech., 47(5), pp. 431-438 (2010). https://doi.org/10.1080/18811248.2010.9711633
  6. L. Duro, M. Grive , E. Cera, C. Domenech and J. Bruno, Update of a Thermodynamic Database for Radionuclides to Assist Solubility Limits Calculation for Performance Assessment, SKB-TR-06-17 (2006).
  7. P. Toulhoat, "Confinement and Migration of Radionuclides in a Nuclear Waste Deep Repository," Applied Physics, C. R. Physique, 3, pp. 975-986 (2002). https://doi.org/10.1016/S1631-0705(02)01381-6
  8. I. G. McKinley and D. Savage, "Comparison of Solubility Databases Used for HLW Performance Assessment," J. Contaminant Hydrology, 21, pp. 335-350 (1996). https://doi.org/10.1016/0169-7722(95)00057-7
  9. J. A. Rard, M. H. Rand, G. Anderegg and H. Wanner, Chemical Thermodynamics of Technetium, NEA/OECD, Elsevier, Amsterdam, The Netherlands (1999).
  10. Chang-Woo Lee, Kun-Ho Chung, Young-Hyun Cho, Mun-Ja Kang, Wanno Lee, Hee-Reyoung Kim and Geun Sik Choi, "Analysis of 99Tc and Its Activity Level in the Korean Soil,"Journal of the Korean Radioactive Waste Society, 7(1), pp. 25-31 (2009).
  11. A. Liu, X. Chen, Z. Zhang, Y. Jiang and C. Shi, "Selective Synthesis and Magnetic Properties of $FeSe_2$ and $FeTe_2$ Nanocrystallites Obtained Through a Hydrothermal Co-reduction Route," Solid State Communications, 138, pp. 538-541 (2006). https://doi.org/10.1016/j.ssc.2006.04.008
  12. N. J. Pilkington, "The Solubility of Technetium in the Near-Field Environmental of Radioactive Waste Repository," J. Less-Common Met., 161, pp. 203-212 (1990). https://doi.org/10.1016/0022-5088(90)90028-I
  13. N. J. Pilkington, "The Solubility of Technetium in the Near-Field Environmental of Radioactive Waste Repository," J. Less-Common Met., 161, pp. 203-212 (1990). https://doi.org/10.1016/0022-5088(90)90028-I
  14. W. Hummel, U. Berner, E. Curti, F. J. Pearson and T. Thoenen, Nagra/PSI Chemical Thermodynamic Data Base 01/01, Universal Publishers, Florida, USA (2002).
  15. JAEA tdb, Japan Nuclear Cycle Development Institute (JNC), Waste Management and Fuel Cycle Research Center, Copyright 2003-2004. DATABASE Version : 011213c2.tdb.
  16. P. D. Canniere, A. Maes, S. Williams, C. Bruggeman, T. Beauwens, N. Maes and M. Cowper, Behaviour of Selenium in Boom Clay, SCK-CEN, Belgium, SCK-CEN-ER-120 (2010).
  17. M. Mihara, Radio-Nuclide Migration Databases (RAMDA) for the Safety Assessment of TRU Waste Repositories in Japan, Japan Atomic Energy Agency, JAEA-review 2006-011 (2006).
  18. V. Chand and S. Prasad, "Trace Determination and Chemical Speciation of Selenium in Environmental Water Samples Using Catalytic Kinetic Spectrophotometric Method," J. Hazardous Materials, 165, pp. 780-788 (2009). https://doi.org/10.1016/j.jhazmat.2008.10.076
  19. J. H. Rees, "The Theoretical Derivation of Solubilities of Long-Lived Radionuclides in Disposal," J. Nucl. Mater. 130, pp. 336-345 (1985). https://doi.org/10.1016/0022-3115(85)90322-8
  20. T. E. Eriksen, P. Ndalamba, J. Bruno and M. Caceci, "The Solubility of $TcO_2$ $nH_2O$ in Neutral to Alkaline Solutions under Constant $pCO_2$," Radiochim. Acta, 58/59, pp. 67-70 (1992).
  21. R. E. Meyer, W. D. Arnold, F. I. Case and G. D. O'Kelley, "Solubilities of Technetium(IV) Oxides," Radiochimica Acta, 55, pp. 19-22 (1991).
  22. T. Vieno and H. Nordman, Safety Assessment of Spent Fuel Disposal in Hastholmen, Kivetty, Olkiluoto and Romuvaara, TILA-99, Helsinki, Finland: POSIVA OY, POSIVA 99-07 (1999).
  23. R. T. Pabalan, D. R. Turner and M. P. Miklas, "Technetium-99 Chemistry in Reducing Groundwaters: Implications for the Performance of a Proposed High-Level Nuclear Waste Repository at Yucca Mountain, Nevada," Scientific Basis for Nuclear Waste Management XXIII, pp. 231-236. Warrendale, Pennsylvania: Materials Research Society (1999).

Cited by

  1. Occurrence of Arsenic, Strontium, and Selenium in Drinking Water in Kyungpook Province, Korea, in Relation to Geologic Formations vol.16, pp.1, 2015, https://doi.org/10.14481/jkges.2015.16.1.55
  2. Conceptual Design of Sandglass-like Separator for Immobilized Anionic Radionuclides Using Particle Tracking Based on Computational Fluid Dynamics vol.18, pp.3, 2012, https://doi.org/10.7733/jnfcwt.2020.18.3.363