DOI QR코드

DOI QR Code

Frequency Response Compensation Technique for Capacitive Microresonator

용량형 마이크로 공진기의 주파수 응답 보상 기법

  • Seo, Jin-Deok (Department of Electronics, Chungnam National University) ;
  • Lim, Kyo-Muk (Graduate School of Advanced Electonic Circuit Substrate Engineering, Chungnam National University) ;
  • Ko, Hyoung-Ho (Department of Electronics, Chungnam National University)
  • 서진덕 (충남대학교 전자공학과) ;
  • 임교묵 (충남대학교 차세대기판회로학과) ;
  • 고형호 (충남대학교 전자공학과)
  • Received : 2012.04.06
  • Accepted : 2012.05.16
  • Published : 2012.05.31

Abstract

This paper presents frequency response compensation technique, and a self-oscillation circuit for capacitive microresonator with the compensation technique using programmable capacitor array, to compensate for the frequency response distorted by parasitic capacitances, and to obtain stable oscillation condition. The parasitic capacitances between the actuation input port and capacitive output port distort the frequency response of the microresonator. The distorted non-ideal frequency response can be compensated using two programmable capacitor arrays, which are connected between anti-phased actuation input port and capacitive output port. The simulation model includes the whole microresonator system, which consists of mechanical structure, transimpedance amplifier with automatic gain control, actuation driver and compensation circuit. The compensation operation and oscillation output of the system is verified with the simulation results.

Keywords

References

  1. S. Tabatabaei and A. Partridge, "Silicon MEMS oscillators for high-speed digital systems", IEEE Micro, vol. 30, no. 2, pp. 80-89, 2010.
  2. M. Abdelsalam, M. Wahba, M. Abdelmoneum, D. Duarte, and Y. Ismail, "Supporting circuitry for a fully integrated micro electro mechanical(MEMS) oscillator in 45 nm CMOS technology", Proc. of IEEE/IFIP VLSI System on Chip Conference (VLSISoC), Santa Cruz, USA, pp. 259-263, 2010.
  3. K. Sundaresan, G. K. Ho, S. Pourkamali, and F. Ayazi, "Electronically temperature compensated silicon bulk acoustic resonator reference oscillators", IEEE J. Solid-St. Circ., vol. 42, no. 2, pp. 1425- 1434, 2007. https://doi.org/10.1109/JSSC.2007.896521
  4. J. Salvia, P. Lajevardi, M. Hekmat, and B. Murmann, "A 56 MΩ CMOS TIA for MEMS applications", Proc. of IEEE Custom Integrated Circuits Conference 2009(CICC '09), San Jose, USA, pp. 199-202, 2009.
  5. A. Uranga, J. Teva, J. Verd, J. L. Lopez, F. Torres, J. Esteve, G. Abadal, F. Perez-Murano, and N. Barnoil, "Fully CMOS integrated low voltage 100 MHz MEMS resonator", Elec. Lett., vol. 41, no. 24, pp. 1327-1328, 2005. https://doi.org/10.1049/el:20053473
  6. S. Lee and C. Nguyen, "Influence of automatic level control on micromechanical resonator oscillator phase noise", Proc. of IEEE International Frequency Control Symposium, Florida, USA, pp. 341-349, 2003.
  7. Y. Lin, S. Lee, S. Li, Y. Xie, Z. Ren, and C. Nguyen, "Series-resonant VHF micromechanical resonator reference oscillators", IEEE J. Solid-St. Circ., vol. 39, no. 12, pp. 2477-2491, 2004. https://doi.org/10.1109/JSSC.2004.837086
  8. H. M. Lavasani, P. Wanling, B. Harrington, R. Abdolvand, and F. Ayazi, "A 76 dBOhm 1.7 GHz 0.18 um CMOS tunable TIA using broadband current pre-amplifier for high frequency lateral MEMS oscillators", IEEE J. Solid-St. Circ., vol. 46, no. 1, pp. 224-235, 2011. https://doi.org/10.1109/JSSC.2010.2085890
  9. S. Li and S. Chen, "Optimization, simulation, and fabrication of a microgyroscope", Proc. SPIE, pp. 36-42, 2001.
  10. A. Lee, H. Ko, D. Cho, and G. Hwang, "Non-ideal behavior of a driving resonator loop in a vibratory capacitive microgyroscope", Microelectr. J., vol. 39, no. 1, pp. 1-6, 2008. https://doi.org/10.1016/j.mejo.2007.10.025
  11. H. Ko, "Modeling of non-ideal frequency response in capacitive MEMS resonator", Journal of Korean Sensors Society, vol. 19, no. 3, pp. 191-196, 2010.