DOI QR코드

DOI QR Code

Computations of the Lyapunov exponents from time series

  • 투고 : 2012.04.04
  • 심사 : 2012.05.14
  • 발행 : 2012.05.31

초록

In this article, we consider chaotic behavior happened in nonsmooth dynamical systems. To quantify such a behavior, a computation of Lyapunov exponents for chaotic orbits of a given nonsmooth dynamical system is focused. The Lyapunov exponent is a very important concept in chaotic theory, because this quantity measures the sensitive dependence on initial conditions in dynamical systems. Therefore, Lyapunov exponents can decide whether an orbit is chaos or not. To measure the sensitive dependence on initial conditions for nonsmooth dynamical systems, the calculation of Lyapunov exponent plays a key role, but in a theoretical point of view or based on the definition of Lyapunov exponents, Lyapunov exponents of nonsmooth orbit could not be calculated easily, because the Jacobian derivative at some point in the orbit may not exists. We use an algorithmic calculation method for computing Lyapunov exponents using time series for a two dimensional piecewise smooth dynamic system.

키워드

참고문헌

  1. Apostolos, S. and Periklis, G. (1997). Chaos in East European black market exchange rates. Research in Economics, 51, 359-385. https://doi.org/10.1006/reec.1997.0050
  2. Apostolos, S. and Periklis, G. (1999). The North American gas markets are chaotic. The Energy Journal, 20, 83-103.
  3. Apostolos, S. and Periklis, G. (2000). Purchasing power parity nonlinearity and chaos. Applied Financial Economics, 10, 615-622. https://doi.org/10.1080/096031000437962
  4. Choi, J. S. (2010). A mixed model for repeated split-plot data. Journal of the Korean Data & Information Science Society, 21, 1-9.
  5. Do, Y. (2007). Chaos and time-series analysis. Solitons & Fractals, 32, 352-362. https://doi.org/10.1016/j.chaos.2006.07.018
  6. Do, Y. and Baek, H. H. (2006). Dangerous border-collision bifurcations of a piecewise smooth map. Communications on Pure and Applied Analysis, 5, 493-503. https://doi.org/10.3934/cpaa.2006.5.493
  7. Edward, O., Tim, S. and James, A. Y. (1994). Coping with chaos, John Wiley & Sons, Inc, New York.
  8. Jang, H. and Joo, Y. S. (2009). Change of temperature patterns in Seoul. Journal of the Korean Data & Information Science Society, 20, 89-96.
  9. Kim, D., Hong, S. and Park, J. (2009). Predicting an soil temperature in Daegu area. Journal of the Korean Data & Information Science Society, 20, 649-654.
  10. Mario, B., Chris, B., Alan, R. C. and Piotr, K. (2007). Piecewise-smooth dynamical systems: Theory and applications, Springer-Verlag, London.
  11. Nusse, E. and Yorke, J. A. (1992). A procedure for nding numerical trajectories on chaotic. Physica D, 57, 39-57. https://doi.org/10.1016/0167-2789(92)90087-4
  12. Park, G., Joo, Y. S. and Park, D. K. (2011). Development of model for prediction of land sliding at steep slopes. Journal of the Korean Data & Information Science Society, 22, 691-699.
  13. Raymond, S. (1997). Climate chaotic instability: statistical determination and theoretical background. Environmetrics, 8, 517-532. https://doi.org/10.1002/(SICI)1099-095X(199709/10)8:5<517::AID-ENV267>3.0.CO;2-L
  14. Robert, D. (1992). A rst course in chaotic dynamical systems, Westview Press, New York.
  15. Sprott, J. C. (2003). Chaos and time-series analysis, Oxford University Press, Oxford.