DOI QR코드

DOI QR Code

Energy and Statistical Filtering for a Robust Audio Fingerprinting System

강인한 오디오 핑거프린팅 시스템을 위한 에너지와 통계적 필터링

  • Received : 2012.02.29
  • Accepted : 2012.05.08
  • Published : 2012.05.28

Abstract

The popularity of digital music and smart phones led to develope noise-robust real-time audio fingerprinting system in various ways. In particular, The Multiple Hashing(MLH) of fingerprint algorithms is robust to noise and has an elaborate structure. In this paper, we propose a filter engine based on MLH to achieve better performance. In this approach, we compose a energy-intensive filter to improve the accuracy of Q/R from music database and a statistic filter to remove continuity and redundancy. The energy-intensive filter uses the Discrite Cosine Transform(DCT)'s feature gathering energy to low-order bits and the statistic filters use the correlation between searched fingerprint's information. Experimental results show that the superiority of proposed algorithm consists of the energy and statistical filtering in noise environment. It is found that the proposed filter engine achieves more robust to noise than Philips Robust Hash(PRH), and a more compact way than MLH.

디지털 음악과 스마트 폰이 대중화되면서 잡음에 강인한 실시간 음악 핑거프린트 시스템이 다양하게 개발되고 있다. 특히 핑거프린트 알고리즘 중 Multiple Hashing(MLH)은 잡음에 강인하고 정교한 구조로 되어 있다. 본 논문에서는 음악 데이터베이스로부터 질의 및 응답의 정확도를 개선하기 위해 에너지 집중필터를 사용하고 연속성과 중복성을 제거하는 통계적 필터를 제안한다. 에너지 집중 필터는 하위 비트에 에너지가 집중되는 Discrite Cosine Transform(DCT)의 특징을 이용하고, 통계적 필터는 검색된 핑거프린트 정보들 사이의 상관관계 특성을 이용한다. 실험 결과로 잡음 환경에서 에너지와 통계적 필터링으로 구성된 제안 알고리즘은 우수성을 보인다. 이는 제안된 필터 엔진으로 Philips Robust Hash(PRH)보다 잡음에 강인하고 Multiple Hashing(MLH)보다 간결한 핑거프린트 시스템을 구성할 수 있다.

Keywords

References

  1. J. Haitsma and T. Kalker, "Speed-change resistant audio fingerprinting using autocorrelation," Acoustics, Speech and Signal Processing, 2003.
  2. 서용석, 김원겸, 이선화, 서영호, 황치정, "이미지 콘텐츠 출력물의 저작권보호를 위한 디지털 핑거 프린팅 기술에 관한 연구", 한국콘텐츠학회 추계종합학술대회 논문집, 제4권, 제2호, 2006(11).
  3. J. Haitsma and T. Kalker, "A Highly Robust Audio Fingerprinting System," Proc. 3rd Int. Conf. Music Information Retrieval, pp.107-115, 2002(10).
  4. Yu Liu, H. S.Yun, J. S. Sung, and N. S. Kim, "A Novel Audio Fingerprinting Scheme based on Subband Envelop Hashing," Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, pp.813-816, 2009(10).
  5. P. Doets and R. Lagendijk, "Distortion estimation in compressed music using only audio fingerprints," IEEE Trans. Audio, Speech, and Language Processing, Vol.16, No.2, pp.302-317, 2008(2). https://doi.org/10.1109/TASL.2007.911716
  6. N. Ahmed, T. Natarajan, and K. Rao, "Discrete cosine transform," IEEE Trans. Computers, pp.90-93, 1974(1).
  7. K. Rao and P. Yip, "Discrete Cosine Transform: Algorithms, Advantages, Applications," Academic Press, 1990.
  8. Jianping Chen and Tiejun Huang, "A Robust Feature Extraction Algorithm for Audio Fingerprinting," Computer Science, advances in multimedia information processing, Vol.5353/2008, pp.887-890, 2008.
  9. Avery Li-Chun Wang, "An Industrial-Strength Audio Search Algorithm," 4th Symposium Conference on Music Information Retrieval, pp.7-13, 2003(10).
  10. Cerling Wold, Thom Blum, Douglas Keislar, and James Wheaton, "Content-Based Classification, Search, and Retrieval of Audio," IEEE Multimedia, Vol.3, No.3, pp.27-36, Fall, 1996. https://doi.org/10.1109/93.556537

Cited by

  1. Music Search Algorithm for Automotive Infotainment System vol.12, pp.1, 2013, https://doi.org/10.12815/kits.2013.12.1.081