DOI QR코드

DOI QR Code

In과 Ga가 미포함 된 Kesterite Cu2ZnSn(S1-x,Sex)4 (CZTSS) 박막형 태양전지 개발 현황

Development of Kesterite Cu2ZnSn(S1-x,Sex)4 (CZTSS)-Based Thin Film Solar Cells with In and Ga Free Absorber Materials

  • Shin, Seung-Wook (Department of Materials Science and Engineering, KAIST) ;
  • Han, Jun-Hee (Department of Materials Science and Engineering, KAIST) ;
  • Gang, Myeng-Gil (Photonics Technology Research Institute, Department of Materials Science and Engineering Chonnam National University) ;
  • Yun, Jae-Ho (Photovoltaic Research Group, Korea Institute of Energy Research) ;
  • Lee, Jeong-Yong (Department of Materials Science and Engineering, KAIST) ;
  • Kim, Jin-Hyeok (Photonics Technology Research Institute, Department of Materials Science and Engineering Chonnam National University)
  • 투고 : 2012.04.09
  • 심사 : 2012.05.11
  • 발행 : 2012.05.27

초록

Chalcogenide-based semiconductors, such as $CuInSe_2$, $CuGaSe_2$, Cu(In,Ga)$Se_2$ (CIGS), and CdTe have attracted considerable interest as efficient materials in thin film solar cells (TFSCs). Currently, CIGS and CdTe TFSCs have demonstrated the highest power conversion efficiency (PCE) of over 11% in module production. However, commercialized CIGS and CdTe TFSCs have some limitations due to the scarcity of In, Ga, and Te and the environmental issues associated with Cd and Se. Recently, kesterite CZTS, which is one of the In- and Ga- free absorber materials, has been attracted considerable attention as a new candidate for use as an absorber material in thin film solar cells. The CZTS-based absorber material has outstanding characteristics such as band gap energy of 1.0 eV to 1.5 eV, high absorption coefficient on the order of $10^4cm^{-1}$, and high theoretical conversion efficiency of 32.2% in thin film solar cells. Despite these promising characteristics, research into CZTS-based thin film solar cells is still incomprehensive and related reports are quite few compared to those for CIGS thin film solar cells, which show high efficiency of over 20%. The recent development of kesterite-based CZTS thin film solar cells is summarized in this work. The new challenges for enhanced performance in CZTS thin films are examined and prospective issues are addressed as well.

키워드

참고문헌

  1. D. B. Mitzi, O.Gunawan, T. K. Todorov, K. Wang and S. Guha, Sol. Energ. Mater. Sol. Cell., 95, 1421 (2011). https://doi.org/10.1016/j.solmat.2010.11.028
  2. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann and M. Powalla, Prog. Photovolt. Res. Appl., 19, 894 (2011). https://doi.org/10.1002/pip.1078
  3. S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka and K. Matsubara, Prog. Photovolt. Res. Appl., 18, 453 (2010). https://doi.org/10.1002/pip.969
  4. H. Wang, Int. J. Photoenergy, 2011, 1, (2011). doi:10.1155/2011/801292
  5. H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki and A. Takeuchi, Thin Solid Films, 517, 2455 (2009). https://doi.org/10.1016/j.tsf.2008.11.002
  6. H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W. S. Maw, T. Fukano, T. Ito and T. Motohiro, Appl. Phys. Express, 1, 041201 (2008). https://doi.org/10.1143/APEX.1.041201
  7. D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov and D. B. Mitzi, Prog. Photovolt. Res. Appl., 20, 6 (2012). https://doi.org/10.1002/pip.1160
  8. S. Botti, D. Kammerlander and M. A. L. Marques, Appl. Phys. Lett., 98, 241915 (2011). https://doi.org/10.1063/1.3600060
  9. S. Chen, X. G. Gong, A. Walsh and S. -H. Wei, Appl. Phys. Lett., 94, 041903 (2009). https://doi.org/10.1063/1.3074499
  10. F. Liu, Y. Li, K. Zhang, B. Wang, C. Yan, Y. Lai, Z. Zhang, J. Li and Y. Liu, Sol. Energ. Mater. Sol. Cell., 94, 2431 (2010). https://doi.org/10.1016/j.solmat.2010.08.003
  11. K. Ito and T. Nakazawa, Jpn. J. Appl. Phys., 27, 2094 (1988). https://doi.org/10.1143/JJAP.27.2094
  12. H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi and T. Yokota, Sol. Energ. Mater. Sol. Cell., 49, 407 (1997). https://doi.org/10.1016/S0927-0248(97)00119-0
  13. H. Katagiri, Thin Solid Films, 480-481, 426 (2005). https://doi.org/10.1016/j.tsf.2004.11.024
  14. B. H. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey and S. Guha, Prog. Photovolt. Res. Appl., 2, 1174 (2011). DOI: 10.1002/pip.1174
  15. S. Ahmed, K. B. Reuter, O. Gunawan, L. Guo, L. T. Romankiw and H. Deligianni, Adv. Energy Mater., 2, 253 (2012). https://doi.org/10.1002/aenm.201100526
  16. A. V. Moholkar, S. S. Shinde, A. R. Babar, K. U. Sim, H. K. Lee, K. Y. Rajpure, P. S. Patil, C. H. Bhosale and J. H. Kim, J. Alloy. Comp., 509, 7439 (2011). https://doi.org/10.1016/j.jallcom.2011.04.074
  17. J. He, L. Sun, S. Chen, Y. Chen, P. Yang and J. Chu, J. Alloys Comp., 511, 129 (2012). https://doi.org/10.1016/j.jallcom.2011.08.099
  18. Q. Guo, G. M. Ford, W. C. Yang, B. C. Walker, E. A. Stach, H. W. Hillhouse and R. Agrawal, J. Am. Chem. Soc., 132, 17384 (2010). https://doi.org/10.1021/ja108427b
  19. J. S. Seol, S. Y. Lee, J. C. Lee, H. D. Nam and K. H. Kim, Sol. Energ. Mater. Sol. Cell., 75, 155 (2003). https://doi.org/10.1016/S0927-0248(02)00127-7
  20. T. Tanaka, T. Nagatomo, D. Kawasaki, M. Nishio, Q. Guo, A. Wakahara, A. Yoshida and H. Ogawa, J. Phys. Chem. Solid., 66, 1978 (2005). https://doi.org/10.1016/j.jpcs.2005.09.037
  21. H. Yoo and J. Kim, Thin Solid Films, 518, 6567 (2010). https://doi.org/10.1016/j.tsf.2010.03.058
  22. S. W. Shin, S. M. Pawar, C. Y. Park, J. H. Yun, J. H. Moon, J. H. Kim and J. Y. Lee, Sol. Energ. Mater. Sol. Cell., 95, 3202 (2011). https://doi.org/10.1016/j.solmat.2011.07.005
  23. R. B. V. Chalapathy, G. S. Jung and B. T. Ahn, Sol. Energ. Mater. Sol. Cell., 95, 3216 (2011). https://doi.org/10.1016/j.solmat.2011.07.017
  24. P. M. P. Salome, P. A. Fernandes, A. F. da Cunha, J. P. Leitao, J. Malaquias, A. Weber, J. C .Gonzalez and M. I. N. da Silva, Sol. Energ. Mater. Sol. Cell., 94, 2176 (2010). https://doi.org/10.1016/j.solmat.2010.07.008
  25. R. A. Wibowo, W. S. Kim, E. S. Lee, B. Munir and K. H. Kim, J. Phys. Chem. Solid., 68, 1908 (2007). https://doi.org/10.1016/j.jpcs.2007.05.022
  26. H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani and S. Miyajima, Sol. Energ. Mater. Sol. Cell., 65, 141 (2001). https://doi.org/10.1016/S0927-0248(00)00088-X
  27. H. Araki, A. Mikaduki, Y. Kubo, T. Sato, K. Jimbo, W. S. Maw, H. Katagiri, M. Yamazaki, K. Oishi and A. Takeuchi, Thin Solid Films, 517, 1457 (2008). https://doi.org/10.1016/j.tsf.2008.09.058
  28. S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong and J. H. Yun, Appl. Phys. Lett., 97, 021905 (2010). https://doi.org/10.1063/1.3457172
  29. B. A. Schubert, B. Marsen, S. Cinque, T. Unold, R. Klenk, S. Schorr and H. W. Schock, Prog. Photovolt. Res. Appl., 19, 93 (2011). https://doi.org/10.1002/pip.976
  30. K. Moriya, K. Tanaka and H. Uchiki, Jpn. J. Appl. Phys., 46, 5780 (2007). https://doi.org/10.1143/JJAP.46.5780
  31. S. M. Pawar, A. V. Moholkar, I. K. Kim, S. W .Shin, J. H. Moon, J. I. Rhee and J. H. Kim, Curr. Appl. Phys., 10, 565 (2010). https://doi.org/10.1016/j.cap.2009.07.023
  32. A. V. Moholkar, S. S. Shinde, A. R. Babar, K. U. Sim, Y. B. Kwon, K. Y. Rajpure, P. S. Patil, C. H. Bhosale and J. H. Kim, Sol. Energ., 85, 1354 (2011). https://doi.org/10.1016/j.solener.2011.03.017
  33. L. Sun, J. He, H. Kong, F. Yue, P. Yang and J. Chu, Sol. Energ. Mater. Sol. Cell., 95, 2907 (2011). https://doi.org/10.1016/j.solmat.2011.06.026
  34. N. Nakayama and K. Ito, Appl. Surf. Sci., 92, 171 (1996). https://doi.org/10.1016/0169-4332(95)00225-1
  35. N. Kamoun, H. Bouzouita and B. Rezig, Thin Solid Films, 515, 5949 (2007). https://doi.org/10.1016/j.tsf.2006.12.144
  36. Y. B. K. Kumar, P. U. Bhaskar, G. S. Babu and V. S. Raja, Phys. Status Solidi, 207, 149 (2010). https://doi.org/10.1002/pssa.200925194
  37. K. Tanaka, N. Moritake and H. Uchiki, Sol. Energ. Mater. Sol. Cell., 91, 1199 (2007). https://doi.org/10.1016/j.solmat.2007.04.012
  38. K. Tanaka, N. Moritake, M. Oonuki and H. Uchiki, Jpn. J. Appl. Phys., 47, 598 (2008). https://doi.org/10.1143/JJAP.47.598
  39. K. Tanaka, Y. Fukui, N. Moritake and H. Uchiki, Sol. Energ. Mater. Sol. Cell., 95, 838 (2011). https://doi.org/10.1016/j.solmat.2010.10.031
  40. J. J. Scragg, P. J. Dale and L. M. Peter, Electrochem. Commun., 10, 639 (2008). https://doi.org/10.1016/j.elecom.2008.02.008
  41. J. J. Scragg, P. J. Dale and L. M. Peter, Thin Solid Films, 517, 2481 (2009). https://doi.org/10.1016/j.tsf.2008.11.022
  42. J. J. Scragg, D. M. Berg and P. J. Dale, J. Electroanal. Chem., 646, 52 (2010). https://doi.org/10.1016/j.jelechem.2010.01.008
  43. H. Araki, Y. Kubo, A. Mikaduki, K. Jimbo, W. S. Maw, H. Katagiri, M. Yamazaki, K. Oishi and A.Takeuchi, Sol. Energ. Mater. Sol. Cell., 93, 996 (2009). https://doi.org/10.1016/j.solmat.2008.11.045
  44. A. Ennaoui, M. Lux-Steiner, A. Weber, D. Abou-Ras, I. Kotschau, H. W. Schock, R. Schurr, A. Holzing, S. Jost, R. Hock, T. Vob, J. Schulze and A. Kirbs, Thin Solid Films, 517, 2511 (2009). https://doi.org/10.1016/j.tsf.2008.11.061
  45. S. M. Pawar, B. S. Pawar, A. V. Moholkar, D. S. Choi, J. H. Yun, J. H. Moon, S. S. Kolekar and J. H. Kim, Electrochim. Acta, 55, 4057 (2010). https://doi.org/10.1016/j.electacta.2010.02.051
  46. S. C. Riha, B. A. Parkinson and A. L. Prieto, J. Am. Chem. Soc., 131, 12054 (2009). https://doi.org/10.1021/ja9044168
  47. Q. Guo, H. W. Hillhouse and R. Agrawal, J. Am. Chem. Soc., 131, 11672 (2009). https://doi.org/10.1021/ja904981r
  48. T. Kameyama, T. Osaki, K. I. Okazaki, T. Shibayama, A. Kudo. S. Kuwabata and T. Torimoto, J. Mater. Chem., 20, 5319 (2010). https://doi.org/10.1039/c0jm00454e
  49. C. Steinhagen, M. G. Panthani, V. Akhavan, B. Goodfellow, B. Koo and B. A. Korgel, J. Am. Chem. Soc., 131, 12554 (2009). https://doi.org/10.1021/ja905922j
  50. M. Cao and Y. Shen, J. Cryst. Growth 318, 1117 (2011). https://doi.org/10.1016/j.jcrysgro.2010.10.071
  51. S. W. Shin, J. H. Han, C. Y. Park, A. V. Moholkar, J. Y. Lee and J. H. Kim, J. Alloy. Comp., 516, 96 (2012). https://doi.org/10.1016/j.jallcom.2011.11.143
  52. R. A. Wibowo, W. H. Jung and K. H. Kim, J. Phys. Chem. Solid., 71, 1702 (2010). https://doi.org/10.1016/j.jpcs.2010.08.012
  53. D. Park, D. Nam, S. Jung, S. An, J. Gwak, K. Yoon, J. H. Yun and H. Cheong, Thin Solid Films, 519, 7386 (2011). https://doi.org/10.1016/j.tsf.2011.01.142
  54. K. Woo, Y. Kim and J. Moon, Energ. Environ. Sci., 5, 5340 (2012). https://doi.org/10.1039/c1ee02314d
  55. B. S. Pawar, S. M. Pawar, S. W. Shin, D. S. Choi, C. J. Park, S. S. Kolekar and J. H. Kim, Appl. Surf. Sci., 257, 1786 (2010). https://doi.org/10.1016/j.apsusc.2010.09.016
  56. H. Yoo and J. Kim, Sol. Mater. Energ. Sol. Cell., 95, 239 (2011). https://doi.org/10.1016/j.solmat.2010.04.060
  57. G. S. Babu, Y. B. K. Kumar, P. U. Bhaskar and V. S. Raja, J. Phys. Appl. Phys., 41, 205305 (2008). https://doi.org/10.1088/0022-3727/41/20/205305
  58. G. S. Babu, Y. B. K. Kumar, P. U. Bhaskar and S. R. Vanjari, Sol. Energ. Mater. Sol. Cell., 94, 221 (2010). https://doi.org/10.1016/j.solmat.2009.09.005
  59. P. U. Bhaskar, G. S. Babu, Y. B. K. Kumar and V. S. RaJa, Appl. Surf. Sci. 257, 8529 (2011). https://doi.org/10.1016/j.apsusc.2011.05.008
  60. P. A. Fernandes, P. M. P. Salome and A. F. da Cunha, Semicond. Sci. Tech., 24, 105013 (2009). https://doi.org/10.1088/0268-1242/24/10/105013
  61. B. A. Schubert, B. Marsen, S. Cinque, T. Unold, R. Klenk, S. Schorr and H. W. Schock, Prog. Photovolt. Res. Appl., 19, 93 (2011). https://doi.org/10.1002/pip.976
  62. A. Redinger, K. Hones, X. Fontane, V. Izquierdo-Roca, E. Saucedo, N. Valle, A. Perez-Rodriguez and S.Siebentritt, Appl. Phys. Lett., 98, 101907 (2011). https://doi.org/10.1063/1.3558706
  63. K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi and S. Guha, Appl. Phys. Lett., 97, 143508 (2010). https://doi.org/10.1063/1.3499284
  64. K. Wang, B. Shin, K. B. Reuter, T. Todorov, D. B. Mitzi and S. Guha, Appl. Phys. Lett., 98, 051912 (2011). https://doi.org/10.1063/1.3543621
  65. G. M. ford, Q. Guo, R. Agrawal and H. W. Hillhous, Chem. Mater., 23, 2626 (2011). https://doi.org/10.1021/cm2002836
  66. J. J. Scragg, P. J. Dale, L. M. Perter, G. Zoppi and I. Forbes, Phys. Status Solidi B 245, 1772 (2008). https://doi.org/10.1002/pssb.200879539
  67. K. Tanaka, M. Oonuki, N. Moritake and H. Uchiki, Sol. Energy Mater. Sol. Cells, 93, 583 (2009). https://doi.org/10.1016/j.solmat.2008.12.009