DOI QR코드

DOI QR Code

산화아연과 탄소나노튜브의 선형 층상 복합체의 일산화질소 가스 감지특성

NO Gas Sensing Characteristics of Wire-Like Layered Composites Between Zinc Oxide and Carbon Nanotube

  • 김옥길 (충남대학교 공과대학 재료공학과) ;
  • 김효진 (충남대학교 공과대학 재료공학과) ;
  • 김도진 (충남대학교 공과대학 재료공학과)
  • Kim, Ok-Kil (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Hyo-Jin (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Do-Jin (Department of Materials Science and Engineering, Chungnam National University)
  • 투고 : 2012.04.17
  • 심사 : 2012.05.08
  • 발행 : 2012.05.27

초록

We report on the NO gas sensing properties of Al-doped zinc oxide-carbon nanotube (ZnO-CNT) wire-like layered composites fabricated by coaxially coating Al-doped ZnO thin films on randomly oriented single-walled carbon nanotubes. We were able to wrap thin ZnO layers around the CNTs using the pulsed laser deposition method, forming wire-like nanostructures of ZnO-CNT. Microstructural observations revealed an ultrathin wire-like structure with a diameter of several tens of nm. Gas sensors based on ZnO-CNT wire-like layered composites were found to exhibit a novel sensing capability that originated from the genuine characteristics of the composites. Specifically, it was observed by measured gas sensing characteristics that the gas sensors based on ZnO-CNT layered composites showed a very high sensitivity of above 1,500% for NO gas in dry air at an optimal operating temperature of $200^{\circ}C$; the sensors also showed a low NO gas detection limit at a sub-ppm level in dry air. The enhanced gas sensing properties of the ZnO-CNT wire-like layered composites are ascribed to a catalytic effect of Al elements on the surface reaction and an increase in the effective surface reaction area of the active ZnO layer due to the coating of CNT templates with a higher surface-to-volume ratio structure. These results suggest that ZnO-CNT composites made of ultrathin Al-doped ZnO layers uniformly coated around carbon nanotubes can be promising materials for use in practical high-performance NO gas sensors.

키워드

참고문헌

  1. T. Seiyama, A. Kato, K. Fujiishi and M. Nagatani, Anal. Chem., 34, 1502 (1962). https://doi.org/10.1021/ac60191a001
  2. N. Koshizaki and T. Oyama, Sensor. Actuator. B Chem., 66, 119 (2000). https://doi.org/10.1016/S0925-4005(00)00323-3
  3. M. S. Wagh, G. H. Jain, D. R. Patil, S. A. Patil and L. A. Patil, Sensor. Actuator. B Chem., 115, 128 (2006). https://doi.org/10.1016/j.snb.2005.08.030
  4. S. Basu and A. Dutta, Sensor. Actuator. B Chem., 22, 83 (1994). https://doi.org/10.1016/0925-4005(94)87004-7
  5. J. F. Chang, H. H. Kuo, I. C. Leu and M. H. Hon, Sensor. Actuator. B Chem., 84, 258 (2002). https://doi.org/10.1016/S0925-4005(02)00034-5
  6. Y. Min, H. L. Tuller, S. Palzer, J. Wollenstein and H. Bottner, Sensor. Actuator. B Chem., 93, 435 (2003). https://doi.org/10.1016/S0925-4005(03)00170-9
  7. J. Xu, Q. Pan, Y. Shun and Z. Tian, Sensor. Actuator. B Chem., 66, 277 (2000). https://doi.org/10.1016/S0925-4005(00)00381-6
  8. T. Gao and T. H. Wang, Appl. Phys. Mater. Sci. Process., 80, 1451 (2005). https://doi.org/10.1007/s00339-004-3075-2
  9. Z. Fan and J. G. Lu, J. Nanosci. Nanotech., 5, 1561 (2005). https://doi.org/10.1166/jnn.2005.182
  10. A. Og. Dikovska, P. A. Atanasov, S. Tonchev, J. Ferreira and L. Escoubas, Sensor. Actuator. Phys., 140, 19 (2007). https://doi.org/10.1016/j.sna.2007.05.032
  11. S. -M. Park, S. -L. Zhang and J. -S. Huh, Kor. J. Mater. Res., 18, 367 (2008) (in Korean). https://doi.org/10.3740/MRSK.2008.18.7.367
  12. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho and H. Dai, Science, 287, 622 (2000). https://doi.org/10.1126/science.287.5453.622
  13. P. G. Collins, K. Bradley, M. Ishigami and A. Zettl, Science, 287, 1801 (2000). https://doi.org/10.1126/science.287.5459.1801
  14. A. Wisitsoraat, A. Tuantranont, C. Thanachyanont and P. Singjai, in Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems (Zhuhai, China, January 2006), p. 1487.
  15. K. H. An, S. Y. Jeong, H. R. Hwang and Y. H. Lee, Adv. Mater., 16, 1005 (2004). https://doi.org/10.1002/adma.200306176
  16. S. Y. Park, H. Jung, E. Ahn, L. H. Nguyen, Y. Kang, H. Kim and D. Kim, Kor. J. Mater. Res., 18, 655 (2008) (in Korean). https://doi.org/10.3740/MRSK.2008.18.12.655
  17. S. Ahlers, G. Muller and Th. Doll, Encyclopedia of Sensors, p. 413, ed. by C. A. Grimes, E. C. Dickey and M. V. Pishko, American Scientific Publishers (2006).
  18. W. -K. Hong, G. Jo, S. -S. Kwon, S. Song and T. Lee, IEEE Trans. Electron Dev., 55, 3020 (2008). https://doi.org/10.1109/TED.2008.2005156
  19. H. Nanto, T. Minami and S. Takata, J. Appl. Phys., 60, 482 (1986). https://doi.org/10.1063/1.337435
  20. L. C. Tien, P. W. Sadik, D. P. Norton, L. F. Voss, S. J. Pearton, H. T. Wang, B. S. Kang, F. Ren, J. Jun and J. Lin, Appl. Phys. Lett., 87, 222106 (2005). https://doi.org/10.1063/1.2136070
  21. Y. Kang, D. Oh, H. Song, J. Jung, H. Jung, Y. Cho and D. Kim, Kor. J. Mater. Res., 18, 253 (2008) (in Korean). https://doi.org/10.3740/MRSK.2008.18.5.253
  22. M. Che and A. J. Trench, Adv. Catal., 31, 77 (1982). https://doi.org/10.1016/S0360-0564(08)60453-8
  23. R. W. J. Scott, S. M. Yang, G. Chadanis, D. E. Williams and G. A. Ozin, Adv. Mater., 13, 1468 (2001). https://doi.org/10.1002/1521-4095(200110)13:19<1468::AID-ADMA1468>3.0.CO;2-O
  24. S. C. Naisbitt, K. F. E. Pratt, D. E. Williams and I. P. Parkin, Sensor. Actuator. B Chem., 114, 969 (2006). https://doi.org/10.1016/j.snb.2005.07.058

피인용 문헌

  1. Nitrogen Monoxide Gas Sensing Properties of Copper Oxide Thin Films Fabricated by a Spin Coating Method vol.25, pp.4, 2015, https://doi.org/10.3740/MRSK.2015.25.4.171