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Abstract 
 

Improving the quality of service in IP networks is a major challenge for real-time voice 

communications. In particular, packet arrival-delay variation, so-called “jitter,” is one of the 

main factors that degrade the quality of voice in mobile devices with the voice-over Internet 

protocol (VoIP). To resolve this issue, a receiver-based enhanced timing recovery algorithm 

combined with active jitter estimation is proposed. The proposed algorithm copes with the 

effect of transmission jitter by expanding or compressing each packet according to the 

predicted network delay and variations. Additionally, the active network jitter estimation 

incorporates rapid detection of delay spikes and reacts to changes in network conditions. 

Extensive simulations have shown that the proposed algorithm delivers high voice quality by 

pursuing an optimal trade-off between average buffering delay and packet loss rate. 
 

 

Keywords: VoIP, timing recovery, active network jitter estimation, buffering delay and 

packet loss 
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1. Introduction 

Voice-over Internet protocol (VoIP) is one of the most recently emerging technologies in the 

area of speech communications. The main advantage of this technology is a utilization of 

existing infrastructure in the form of Internet connection. In the last few years, VoIP has been 

very popular because of its low cost, similar quality to traditional telephones, and ease of use. 

As a result of the steady growth in VoIP usage, providing reliable services with satisfactory 

voice quality is now a high priority for Internet and VoIP service providers. A number of 

factors may affect the service quality of VoIP [1] for example, packet loss, packet delay, 

network delay variation (also known as “jitter”) [2], echo, noise [3], and harmonic and 

inharmonic distortion [4]. 

Normally, in packet-switched networks, a voice packet is transmitted from the speaker’s 

node to the listener’s node every 20 ms or 30 ms to maintain continuous and smooth speech 

conversations. However, voice packets can be transferred via a large number of routers, and 

the amount of routers can be changed during a conversation. Packet queuing delays are 

variable and hard to predict, so, some packets arrive at the receiver at irregular intervals. Jitter 

is the irregularity with which packets in a transmission arrive. This irregularity can damage 

voice quality, as VoIP programs need to receive data at a regular pace. 

In this study, we focus on decreasing the influence of delay jitter on voice quality. To 

reduce the influence of the jitter, a playout buffer can be employed by the receiver to hold a 

VoIP packet until its scheduled playout time. In adaptive playout, the buffer size can be 

minimized by using a timing recovery algorithm, which allows each packet to be expanded or 

compressed [5]. Proper reconstruction of continuous output speech is achieved by scaling 

individual voice packets using timing recovery. The timing recovery algorithms have a 

positive effect on the service quality, but they come at the cost of additional algorithmic delay. 

Several VoIP playout buffer scheduling or timing recovery algorithms have been proposed 

[6][7][8][9][10][11][12][13][14][15]. For effective expanding or compressing of each packet 

resulting from changes in network delay, jitter estimation with high accuracy is very 

important. 

From network delay traces, it is common to observe sudden high delays (known as spikes) 

[16]. A spike begins with the sudden onset of a large increase in network delay and ends when 

network delays return to a steady-state value. Such delay spikes can be caused by heavy 

congestion resulting in long queues at routers within the network. The spike period is usually 

very short and unpredictable, so burst packet loss occurs as a result. In the case of a sudden 

increase of the transmission delay, an underflow of the playout buffer occurs. A sudden 

decrease of the transmission delay may cause an overflow of the playout buffer. To reduce the 

influence of delay spikes, playout buffer algorithms need to incorporate spike detection 

[6][10], thereby computing their delay estimates differently and rapidly during spikes. 

The most challenging issue raised by VoIP playout buffering is how to determine the most 

appropriate buffer size for current network conditions in order to improve the voice quality 

transmitted through an IP network. 

The contribution of this paper is four-fold: (1) A method for deciding on a timing recovery 

mode compared to loss concealment mode or merging and smoothing mode for maintaining a 

balance between conversational interactivity and speech quality is proposed. (2) A subprocess 

in the timing recovery mode, which is classified into three categories, time compression, time 
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expansion, and normal, is presented. (3) An enhanced expansion and compression approach in 

timing recovery algorithms for alleviating the metallic artifacts in a transition region and 

improving the voice quality is presented. (4) An effective jitter estimation for improving the 

trade-off between buffering delay and packet loss is proposed. This jitter estimation detects 

delay spikes rapidly and is applied to adjusting the playout buffering delay according to 

current network conditions. 

The approach used in this paper has three advantages: (1) It improves the trade-off between 

the buffering delay and packet loss very quickly, (2) it is simpler than existing approaches and 

delivers high-quality voice as a result, and (3) it is voice codec independent and suitable for 

any practical mobile VoIP system. 

This paper is organized as follows. Section 2 contains a review of related works. Section 3 

and Section 4 detail a structure of a receiving part in a VoIP system and the proposed timing 

recovery method combined with active jitter estimation. Section 5 presents the results of 

performance comparison of different algorithms, and conclusions are summarized in Section 

6. 

2. Related Works 

Several VoIP playout buffer scheduling or timing recovery algorithms have been proposed to 

improve the voice quality of VoIP communications.  

Ramjee [6] adjusted the buffer size based on the exponential weighted moving average 

(EWMA) of network delays and their standard deviation, where the weights of the variables 

are selected empirically and fixed. Subsequently, Narbutt [7] extended the above approach by 

adaptively adjusting the EWMA weight based on the magnitude of the delay jitter. The weight 

is set higher when the delay jitter is smaller; conversely, it is set lower when the jitter is larger. 

The reported simulation results show that this approach improves the trade-off between buffer 

delay and packet loss significantly. The EWMA algorithm [6] is modified by Kansal [8] to 

adaptively adjust α to an optimal value. The algorithm calculates the loss rate for previous 

talkspurts based on the current value of α. The increment value is much smaller than α, as 

small changes in α lead to large changes in packet loss and total end-to-end delay. Pinto [9] 

presents a method that adjusts silence periods between talkspurts to improve voice interaction 

qualities. The approaches proposed in Pinto’s work are further extended by adjusting the 

buffer size within a speech burst [10][11]. The objective is to ensure that the playout buffer 

adapts to varying network conditions more quickly, and thereby improves the conversation 

quality of VoIP calls. Chi [12], Li [13], and Aragao [14] suggest statistically-based approaches 

using the statistics of past network delays to compute the current packet playout delay. Playout 

scheduling is based on modeling packet arrival times with K-Erlang distribution, Gaussian 

model, and Pareto distribution, among others. Based on the distribution of past delays, the 

playout delay is selected such that a tolerable percentage of packets will arrive “late.” 

However, these methods are “packet-based,” which means that they decide to stretch or 

compress a packet when it is received. As such, it does not reflect the changing state of 

arriving packets until the packet outputs. Florncio [5] uses the “buffer-based” method, which 

decides to stretch or compress only when the audio playout device needs a frame. An adaptive 

filter-based algorithm for adaptive playout buffer scheduling is proposed by DeLeon [15]. An 

accurate prediction of the network delay can rapidly track network changes and thus adjust the 

delay more effectively. Different ways of detecting sudden high delays such as spikes and 

adjusting the playout time accordingly are used by Florencio [5] and Ramjee [6]. The adaptive 
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gap-based algorithm [9] simply incorporates the spike detection mode proposed by Ramjee. 

However, they are unable to adapt rapidly to delay spikes. The normalize least mean square 

(NLMS) adaptive filtering algorithm [15] provides a good prediction of the network delay and 

closely tracks any fluctuations in network delay. One drawback of the NLMS predictor is that 

it does not explicitly detect delay spikes and therefore does not alter its behavior during a 

spike. 

3. Structure of Receiving Part in a VoIP System 

Fig. 1 illustrates a structure of the receiving part including timing recovery in a mobile internet 

phone. 

 

Fig. 1. Structure of the receiver side 

 

The receiving system employs combined playout control and signal reconstruction on decoded 

signal frames. On the receiver side of mobile VoIP, when a packet arrives at the receiver, the 
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receiver strips the packet information and places the packet in the jitter buffer. Next, the 

arriving packet information is passed on to network jitter estimation in order to predict the 

network condition more quickly. 

To play out the arriving packets at a regular interval, the receiving system needs to 

maintain a jitter buffer, a signal frame buffer, a history buffer, and an output buffer. In this 

paper, the length of each packet is 20 ms and the sizes of the jitter buffer, the signal frame 

buffer, the history buffer, and the output buffer as a storage medium are 200 ms, 200 ms, 60 ms, 

and 20 ms, respectively. 

Typically, packets do not arrive at the receiver terminal according to the order of sequence 

number generated from the sender under the influence of the network jitter. PAi,k denotes the 

k
th
 arriving packet in the i

th
 talk interval or i

th
 talk-sequence (i is the time index when each 

voice packet is generated at the sending host, while k is the time index when each packet 

arrives at the receiving host). The jitter buffer holds incoming packets, rearranges the arriving 

packets due to the time when the arriving packets are generated at the sending host, and 

releases them for decoding at a regulated speed (i.e., every 10 ms). The amount of packets in 

the jitter buffer will be one to ten packets. Each signal frame decoded from the jitter buffer is 

stored in a signal frame buffer. The currently used voice codecs are G.711, G.722.2, G.726, 

G.728, G.729AB, and G.729E. 

The decoded signal frames are input to the combined playout control and signal 

reconstruction module (PCSR), which decides on one of three processing modes: loss 

concealment, merging and smoothing, or timing recovery. The PCSR then performs signal 

reconstruction based on the decided processing mode. Thereafter, the system plays the current 

packet at the scheduled time (i.e., every 20 ms) through the speaker. 

The proposed decision logic for signal processing is one of the key contributions for 

maintaining a balance between conversational interactivity and speech quality and performs as 

follows: 

• Loss concealment mode: If ith signal frame (subsequent signal frame for playing out) is 

absent in the signal frame buffer, a packet is declared as lost, and “loss concealment mode” 

is entered. The objective of packet loss concealment [16][17][18][19][20][21] is to generate 

a synthetic speech signal to cover missing data. Using waveform similarity overlap-add 

between the subsequent frame and previous frame, the lost frame is reconstructed. 

• Merging and smoothing mode: If ith signal frame is present in the signal frame buffer and 

(i-1)
th
 signal frame was lost, discontinuity between i

th
 signal frame and (i-1)

th
 substituted 

signal frame occurs, and “merging and smoothing mode” is entered. By merging and 

smoothing, two signal frames in a transition region are smoothly interpolated to alleviate 

discontinuity of the transitions from a signal frame to the substitute frame or from the 

substitute frame to the following signal frame [21][22]. 

• Timing recovery mode: If ith signal frame is present in the signal frame buffer and (i-1)
th
 

signal frame was not lost, “timing recovery mode” is entered. Using normalized auto 

correlation, the i
th
 signal frame is classified into silence, unvoiced, and voiced signal frames. 

The classified results are then used in the timing recovery process. 

For recovering lost packets, the PCSR module often makes a subsequent frame demand 

from the voice decoder. This causes the voice decoder to make a packet demand from the jitter 

buffer. The jitter buffer extracts a voice data packet and sends it to the voice decoder, which 

decodes it as a signal frame. The digital-to-analog (D/A) converter regularly converts the 
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sampled signal frame from PCSR into an analog signal. Finally, the user hears the analog 

voice signal through a speaker. 

4. Proposed Timing Recovery Combined with Active Jitter Estimation 

In the proposed timing recovery, the current packet is expanded or compressed by using the 

estimated network jitter in order to allow the next packet to be played at the scheduled time. 

Detailed network jitter estimation and timing recovery are explained in subsections 4.1 and 

4.2. 

4.1 Active Network Jitter Estimation 

The proposed active network jitter estimation incorporates rapid detection of delay spikes to 

react to changes in network conditions. In the proposed algorithm, the active network jitter is 

more accurately estimated by using the mean and variation of interarrival jitter than more 

conventional algorithms. 

Fig. 2 depicts an algorithm flow chart of the proposed active jitter estimation. 

kij ,

ki,β

kin ,

kiki cm ,,   ,

ki,mode

ki,J
 

Fig. 2. Block diagram of the proposed network jitter estimation 

The active jitter estimation can be divided into five modules: present jitter computation, 

network state decision, weighting factor calculation of the present jitter variance, average and 

variance calculation of the present jitter variance, and network jitter estimation. 

First, interarrival jitter is calculated, while network state mode is determined using the 

arriving packet information. The interarrival jitter ji,k is defined as the difference in packet 

spacing at the receiver compared to the sender for the packet arrival PAi,k and the previous 

packet arrival PAi,k-1. Then:  

 

( ) ( )111 −−− −−−=−= k,ik,ik,ik,ik,ik,ik,i ggaannj                                (1) 
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where ni,k, ai,k, gi,k denote, respectively, the network delay that the k
th
 transmitted packet 

experiences, the time when the k
th
 packet arrives at the receiver, and the time when the k

th
 

packet is generated at the sending host. 

Using the network delay that the k
th
 received packet experiences, network state is classified 

into one of two zones: spike or normal. The normal state in the yellow part of Fig. 3 shows the 

stable network situation with a small amount of network jitter. The variation of the network 

delay is constant in the normal state. In contrast, the spike state in the red part of Fig. 3 is the 

unstable network situation, with increasing interarrival jitter. At the end of the spike state, the 

interarrival jitter changes rapidly, as shown in the blue part. 

 

Fig. 3. The types of network situation 

The actual formula used for detecting spike is given in Fig. 4. 
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Fig. 4. Algorithm of network mode decision 

In Fig. 4, Di,k means the network variation between consecutive arriving packets and is defined 

as the sum of arrival-time difference and generation-time difference of consecutively arriving 

packets. Ni,k is the number of arriving packets during spike state and is used to detect the end of 

spike zone. lSni,k-1 and Sni,k represent the largest talk-sequence number among the previous 

arrived packets in normal zone and the talk-sequence number of the arriving packet at the 
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beginning of spike zone, respectively. And Npi,k is the sequence number of the current arriving 

packet during the spike state. 

At the beginning of the spike zone, the difference of consecutive packet arrival may 

increase, because the packet does not arrive at the receiving terminal for a long time, or the 

generation-time difference at the sending host may increase because of the reversed arrival of 

packets, even if the packets arrive at the receiving terminal regularly. A delay spike is detected 

when Di,k is larger than ThSpike ( > 80), such as the case of spike threshold. Upon detecting the 

delay spike, the algorithm switches to spike mode. In spike mode of operation, Ni,k is 

calculated by using lSni,k-1 and Sni,k. Ni,k decreases when Npi,k is greater than lSni,k-1 and less 

than Sni,k. When Ni,k drops to 0, the spike is judged to have ended, and the network situation 

returns to normal. Ni,k equal to 0 indicates that the rest of the packets that did not arrive at the 

receiving terminal during the spike state have finally arrived.  

Second, the current weighting factor βi,k of the network jitter variance is adjusted only in 

the normal zone and can be obtained as:  
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using αc (0< αc <1), αd (0.5< αd <1.5) and:  

 

1

1

−
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=
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c

mj
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where βi,opt is a weighting factor of optimal network jitter variance to minimize the jitter error 

incurred by varying network conditions. To prevent the increased buffering delay due to βi,opt < 

βi,k-1 in normal state, the current weighting factor βi,k is adapted by subtracting αc from the 

previous stored weighting factor βi,k-1. To reduce packet loss rate due to βi,opt ≥ βi,k-1 in normal 

state, βi,k is adapted by adding αc to βi,k-1. Conversely, during the spike state, the previous stored 

weighting factor βi,k-1 is reused as the current weighting factor βi,k. 

After the adjustment of βi,k, average ci,k and variance mi,k of the interarrival jitter are 

calculated according to the determined network situation, as shown in equation (4): 
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where α (0.3< α <0.8) is a smoothing parameter; tmp is the temporal point when the spike is 

detected; mi,tmp and ci,tmp are respectively the mean and the variance of the jitter at the point 

when the previous spike was detected. 

For the end of spike, the mean and variance of each interarrival jitter are calculated using 

those of the previous (k-1)
th
 jitter. Thus, the fast changing network situation can be adjusted 

more accurately for scheduled playout times. 

Finally, the active jitter of the k
th
 arriving packet in the i

th
 talk interval is estimated using the 

calculated mean and variance of network jitters as: 

 

kikikiki cm ,,,,J ⋅+= β                                                      (5) 

4.2 Timing Recovery 

In order to allow the next packet to be played at the scheduled time, the timing recovery 

algorithm tries to overcome the effect of transmission jitter by way of normal operating or 

expanding or compressing each packet using the estimated network jitter. By using the 

proposed timing recovery algorithm, the jitter is smoothed out before packets are played at the 

receiver. Additionally, the influence of time clock drift in terminal equipment is decreased. 

Fig. 5 depicts the algorithm flow chart for timing recovery. 

 

Fig. 5. Diagram for sub-process decision logic of timing recovery 
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First, current buffering delay bi,k is calculated by a first order recursive averaging, given by: 

 

( ) ( )k,ik,ibk,ibk,i apbb −⋅−+⋅= − αα 11
                                       (6) 

 

where αb (0< αb <1) is a smoothing parameter, and pi,k and ai,k denote playout time and arrival 

time of k
th
 packet in the i

th
 talk interval frame, respectively. 

Second, subprocess decision logic for timing recovery is performed using the estimated 

network jitter and the calculated current buffering delay. For this, the following three 

subprocesses are handled: 

• Time expansion subprocess: Let CR = La / Ji,k denotes the ratio between total length La of the 

remaining signal frames in the signal frame buffer to the active network jitter Ji,k of the k
th
 

arriving packet estimated from the jitter buffer. ER = Ta / Ji,k represents the ratio between 

length of time Ta that the packet did not arrive at the receiver to the active network jitter Ji,k. 

If CR is smaller than the compression threshold Thc (0 < Thc < 3), and ER is larger than the 

expansion threshold The (0 < The < 1), the time expansion subprocess is entered. 

• Time compression subprocess: If CR is larger than the compression threshold Thc and | Ji,k - 

bi,k | is larger than length Lf of one frame, the time compression subprocess is entered. 

• Normal subprocess: If CR is smaller than the compression threshold Thc, and ER is smaller 

than the expansion threshold The, the normal subprocess is entered. Additionally, If CR is 

larger than the compression threshold Thc and | Ji,k -bi,k | is smaller than length Lf of one frame, 

the normal subprocess is entered. 

After the subprocess decision, each subprocess is performed. Enhanced compressing and 

expansion algorithms are presented as follows: 

• Time compression 

A sudden decrease of the transmission delay (i.e., network condition is changed into normal 

state from spike state) may cause an overflow of the jitter buffer. This situation is an indication 

that the system introduces excessive delay of the playback. In this case, the receiver performs 

time compression in order to reduce the buffering delay. The length of signal frames in the 

signal frame buffer will converge to a length similar to the estimated network jitter. Time 

compression eliminates unnecessary buffering delay using a compression algorithm.  

Fig. 6 illustrates an exemplifying time compression of two signal frames classified as 

unvoiced. 

 
 (a). Original signal frame 
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(b). Compressed signal frame 

Fig. 6. Time compression of two signal frames 

Time compression strategy depends on the signal class of both of the i
th
 signal frame and 

(i-1)
th
 signal frame (i.e., using normalized auto correlation, each signal frame is classified into 

one of three classes: silence, unvoiced, or voiced signal class). The objective voice quality 

testing results using perceptual evaluation of speech quality (PESQ) indicate that time 

compression in the voiced region can cause distortion and degrade the voice quality. Therefore, 

time compression is used only in the region including signal frames classified as unvoiced or 

silence. 

In Fig. 6-(a) two consecutive uncompressed frames, the 70
th
 frame and 71

st
 frame, are 

shown. Fig. 6-(b) shows the resulting compressed frame. First, the 70
th
 frame is obtained from 

the signal frame buffer. N samples from the 71
st
 frame are selected as reference segment X. 

The most similar segment Z to the segment X is detected in the 70
th
 frame by looking for the 

minimum of the normalized cross-correlation measure. A smooth estimate of segment X’ is 

generated by using synchronized overlap & add (SOLA) between segment Z and segment X. 

Finally, segment P, encompassing the trailing part of the 70
th
 frame from sample “a” and the 

heading part of the 71
st
 frame up to sample “b,” has been time compressed to the segment X’.  

• Time expansion 

At a sudden increase of the transmission delay, there is the risk that an underflow of the jitter 

buffer may occur. That is, no data packets are available in the jitter buffer at the required time 

of decoding to yield the signal frame for continued playback. In this case, the signal frame 

existing in the signal frame buffer is expanded, and the receiver can effectively eliminate the 

packet loss by increasing network delay. This paper’s time expansion tries to stretch a frame 

length to triple length. 

Fig. 7 shows a diagram illustrating a trailing part of a signal frame to be time expanded. 

 
(a). Original signal frame 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 4, Apr 2012                                               1017 

 
(b). Expanded signal frame 

Fig. 7. Time expansion of two signal frames 

In Fig. 7-(a) two consecutive unexpanded frames, the 69
th
 frame and the 70

th
 frame, are 

shown. Fig. 7-(b) shows the resulting expanded frame. First, the 70
th
 frame is divided into two 

parts, such as segment A and segment B. The most similar segment B’ to segment B is 

searched in the 69
th
 frame while the most similar segment A’ to segment A is searched in the 

69
th
 frame by looking for the minimum of the normalized cross-correlation measure. Segment 

C encompasses the trailing part of the 69
th
 frame from sample “lA” and segment A of the 70

th
 

frame, while segment D encompasses the trailing part of the 69
th
 frame from sample “lB” and 

the 70
th
 frame. Segment C and segment D are used as expansion segments, as shown in Fig. 

7-(b). 

4.3 Playout-time Computation 

The basic operation of the playout process is as follows. When a new packet PAi,k arrives, its 

network delay ni,k is obtained from the real-time transport protocol (RTP) header it carries. 

Actual network delay ni,k, together with past delays, is taken into consideration to estimate 

delay ni,k+1 and playout time pi+1,k of the next incoming packet. The current i
th
 signal frame is 

then scaled by the process of timing recovery immediately. If the delay of the next packet is 

correctly estimated, the next packet should arrive before the last sample of the current packet is 

played. Usually, packets are scaled to either retard the speech when the network delay is 

increasing, or speed up the speech when it is decreasing. It is important to note that this scheme 

introduces some additional delay due to signal processing. 

In the proposed method, the estimate for the network delay Eni,k is computed to be: 

 

ki

T

kikiki nEn ,,1,, nw=≅ +                                                    (7) 

 

where Eni,k is the predicted network delay value for the i
th
 packet, wi,k is the T×1 vector of 

adaptive filter coefficients of the Enhanced normalized least mean squares (NLMS) algorithm 

[23], ( )
T
 is the vector transpose, and ni,k is T×1 vector containing the past T network delays (up 

to and including the delay for packet (i − 1)). The filter tap weights wi,k are then updated after 
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each packet using the Enhanced NLMS algorithm: 

 

kiki

ki

T

ki

kiki e
a

,,

,,

,1, n
nn

ww
+

+=+

µ
                                            (8) 

 

where µ is the step size, a (0< a <1) is a small constant to prevent division by zero, and the 

estimation error ei,k is given by ei,k = Eni,k - ni,k . 

Table 1 lists the empirical values of the parameters used in the implementation of the 

Enhanced NLMS algorithm.  

 

Table 1. Enhanced NLMS parameter values 

Parameter Values 

wo (10…0)
T
 

T 20 

µ 0.001 

 

The playout times are then adjusted as: 

 

kikikiki REnp ,,,,1 J⋅++=+ η                                                    (9) 

 

where Ri,k is the timing recovery delay, and η (0< η <3) controls the additional buffering delay 

and lateness loss ratio.  

5. Experimental Results 

5.1 Testbed Infrastructure and Measurements 

In order to evaluate the algorithm, a testbed, as shown in Fig. 8, is set up. The testbed consists 

of three modules, which are session initiation protocol (SIP) signaling, audio data transport, 

and network traffic emulator. 
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Fig. 8. Test bed infrastructure 

These are connected to each other by two types of networks: ethernet (100 Mbps) and 

wireless local area network (WLAN) (300 Mbps). SIP signaling involves a SIP Proxy Server 

and two clients. VoIP application is developed by using Visual C++ and is installed in clients. 

Clients are mobile devices that have the following specifications: 800 MHz CPU, 4 GB 

memory, and Windows Mobile 6.1 Professional Edition operating system (OS). SIP signaling 

messages are transferred through the audio data transport module and are sent from clients to 

the SIP Proxy Server, and then the SIP signaling messages redirected to clients accordingly. 

Clients send audio data in RTP packets. In the audio data transport module, Clients A and B 

are each connected to access points (access points 1 and 2) of ipTime N604M (Hubs 1 and 2). 

In the network traffic emulator module, a traffic generator is used in order to simulate WLAN 

connections with different traffic loads such as delay, jitter, and packet loss. The traffic client 

receives the RTP packets via Access Point 1 and sends it to Access Point 2 with the traffic 

load.  

The speech samples used for the experiments are spoken by various male and female 

speakers and are sampled and digitized at 8 kHz or 16 kHz. Each trace lasts for approximately 

five minutes, consists of 15,000 packets, and each packet consists of 20 ms of speech content.  

To evaluate the quality degradation, objective voice quality testing using PESQ is 

performed. PESQ is a recognized method of accurately testing the level of quality that will be 

perceived by the user of a VoIP network, and it is described in the latest ITU-T 

recommendation P.862, Amendment 2 [24]. PESQ provides a score in the range of 1 to 5, 

where 1 is unacceptable and 5 is excellent. A typical range for VoIP is 3.5 to 4.2. 

5.2 Performance Comparison 

This paper compares the performance of the proposed method with three methods. The three 

methods used have been modified from the contents of reference papers and implemented. 



1020                          Kim : Enhanced Timing Recovery Using Active Jitter Estimation for Voice-Over IP Networks 

Method 1 is based on the adaptive gap-based algorithm [9] incorporated with spike detection 

[6], while Method 2 is based on an adaptive NLMS playout algorithm with delay spike 

detection [2]. In Method 3, a timing recovery and loss substitution method [21] is combined 

with modeling the statistics of the interarrival times with the K-Erlang distribution [13]. Four 

methods commonly incorporate the packet loss concealment [17]. 

For the performance comparisons, three tests are performed: jitter estimation based on 

spike detection, total loss rate vs. average buffering delay, and average buffering delay vs. 

PESQ. 

5.2.1 Comparison Results of Jitter Estimation based on Spike Detection 

Traces of network delay measurements are characterized by occurrences of large delay spikes 

(e.g., maximum jitter over 250 ms). The four network conditions are listed in Table 2. In 

Table 2, average of the network delay, standard deviation (STD) of the network delay (which 

reflects the jitter characteristics for each condition), and maximum jitter (which is the 

difference between the maximum and minimum delay in the short trace) are depicted. Because 

we want to focus on the effect of jitter estimation based on spike detection in this section, four 

network delay traces with the extreme maximum jitter over 250 ms are chosen from the 

Internet links of the testbed infrastructure. And the network traces do not carry any network 

packet loss.  

Table 2. The statistics of network traces 

Trace 
End-to-end network 

delay (ms) 

STD of network 

delay (ms) 

Maximum jitter 

(ms) 

Network packet 

loss (%) 

A 49.29 26.02 295 0 

B 42.17 57.75 392 0 

C 48.79 31.97 374 0 

D 47.17 34.77 342 0 

 

The jitter estimation performance of the proposed algorithm, Method 1, Method 2, and 

Method 3 is compared. Table 3 shows the experimental results on jitter estimation error and 

late loss rate for each trace. PM denotes the proposed algorithm. As shown in Table 3, the 

proposed jitter estimation based on spike detection achieves smaller jitter-estimation errors 

and late loss rate overall than Method 1, Method 2, and Method 3. 

Table 3. Performance of the jitter estimation 

Trace Method Jitter estimation error(ms) Late loss rate (%) 

A 

PM 34.4 1.06 

Method 1 68.6 2.37 

Method 2 51.8 1.73 

Method 3 60.5 2.02 

B 

PM 46.1 1.87 

Method 1 86.9 3.22 

Method 2 67.5 2.53 

Method 3 77.3 2.89 
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C 

PM 36.9 1.46 

Method 1 74.6 2.55 

Method 2 55.8 2.11 

Method 3 66.2 2.43 

D 

PM 34.3 1.30 

Method 1 65.1 2.39 

Method 2 50.3 1.86 

Method 3 58.2 2.13 

 

Fig. 9 shows the results of the jitter estimation by the four methods on Trace A. The black 

line denotes the network delay of the arriving packets. The blue line marked with the symbol 

‘x’; the black line marked with the symbol ‘•’; the black line marked with the symbol ‘▲’; the 

red line marked with the symbol ‘○’represents the estimated network jitter by Method 1, 

Method 2, Method 3, and the proposed algorithm, respectively. 

 

 

Fig. 9. Jitter estimation results of the proposed algorithm, Method 1, Method 2, and Method 3.  

As shown in Fig. 9, the proposed algorithm can estimate the network jitter more correctly 

than Method 1, Method 2, and Method 3 during spike intervals, thereby effectively reducing 

the jitter estimation error. 

5.2.2 Comparison Results of Total Loss Rate vs. Average Buffering Delay, and 
Average Buffering Delay vs. PESQ 

For the performance comparisons of total loss rate vs. average buffering delay, and average 

buffering delay vs. PESQ, four network delay traces obtained from the Internet links of the 

testbed are used and are listed in Table 4, showing that the maximum jitter increases from 44 

ms to 371 ms. Compared with Table 2, the network packet loss is included in three traces for 

proving the efficiency of the timing recovery combined with the jitter estimation. Traces 2 and 

3 carry an approximately 2% loss, while Trace 4 includes a 4% loss. 

Table 4. Statistics of network traces  

Trace 
End-to-end network 

delay (ms) 

STD of network 

delay (ms) 

Maximum jitter 

(ms) 

Network packet 

loss (%) 

1 30.74 7.25 44 0 
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2 66.19 19.29 124 2 

3 32.07 11.88 146 2 

4 78.22 31.22 371 4 

 

Fig. 10 shows the late loss rate vs. average buffering delay using different algorithms for 

the four traces. M1, M2, M3, and PM denote Method 1, Method 2, Method 3, and the proposed 

method, respectively. Although our simulations are based on G.711 voice codec, the 

algorithms are audio codec independent and can be implemented on the receiver alone. 

Fig. 10. Performance of timing recovery algorithms 

The performance gain of the proposed method over Methods 1, 2, and 3 differs from trace 

to trace. For Trace 1, the late loss rates of all four methods are very low, under 1%, although 

the average buffering delay increases. The reason for this is that the STD of network delay is 

small and the maximum jitter is low. The proposed method (PM) yields the best performance, 

while the performance of M2 is very similar to M3. On Trace 2, the performance of the PM is 

slightly better than that of M2 and M3. The worst performance is provided by M1, compared 

with M2, M3, and PM. For Trace 3, the PM results in the lowest loss rate, but the difference of 

loss rate between the four methods is small. On Trace 4 with the high maximum jitter, the 

performance of the PM is significantly better than the other three methods because it results in 

more accurate jitter estimation. 

The performance comparison related to average buffering delay vs. PESQ is illustrated in 

Fig. 11. From Fig. 11, one observes that the PM outperforms the reference methods such as 

M1, M2, and M3, in low jitter, medium jitter, high jitter, 2% packet loss rate, and 4% packet 

loss rate. The highest PESQ scores above 4.0 are obtained using the PM with above average 

buffering delay of 30 ms in Trace 1, which does not carry any loss. As the jitter level or packet 
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loss rate increase, the PESQ scores decrease (the performance difference become more 

significant, with clear advantage of the PM). PESQ scores of M1 appear to be significantly 

lower than those of M2 and M3. More importantly, the PM is very suitable for operating at a 

low buffering delay, handling various loss patterns and maximum jitters more effectively 

compared to other methods. 
 

Fig. 11. PESQ score vs. average buffering delay of timing recovery algorithms 

6. Conclusion 

This paper proposes an enhanced timing recovery algorithm combined with active jitter 

estimation to improve voice quality. The proposed algorithm overcomes the effect of 

transmission jitter by way of expanding or compressing each packet according to the estimated 

predicted network delay and variations more accurately than conventional algorithms. The 

active network jitter estimation incorporates rapid detection of delay spikes and reacts to 

changes in network condition, thus the proposed method effectively reduces buffering delay 

and late loss rate. Additionally, enhanced compressing and expansion algorithms alleviate the 

metallic artifacts in transition regions and produce high voice quality. 

Simulation results based on testbed infrastructure show that the trade-off between buffering 

delay and late loss can be improved by the proposed method. The proposed method achieves 

higher PESQ scores than other existing methods and is suitable for any practical mobile VoIP 

system. In future work, the method proposed here may be applied to advanced 

teleconferencing applications running on smart-TV. 
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