DOI QR코드

DOI QR Code

A Study on Secondary School Students' Reasoning Types about Measurement

중.고등학생들의 측정에 대한 추론 유형 분석

  • Received : 2011.12.21
  • Accepted : 2012.03.06
  • Published : 2012.04.30

Abstract

The purpose of this study was to analyze the secondary school students' reasoning types in regards to measurement and to get implications for science education. The subjects were 197 middle school students and 200 high school students. The PMQ1 written instrument was used to explore students' ideas. Students' ideas about measurement were classified in two types of point and set reasoning. The reasoning types distribution were analyzed by grade and measurement step such as data collection, data processing, and data comparison. Reasoning types distribution by measurement step indicated that set reasoning type showed high figures in data processing, but point reasoning type appeared in data collection, and data comparison. Set reasoning type increased significantly by grade in data comparison. The majority of students recognized that the true value of the measurand can not be determined.

이 연구는 중 고등학생들의 측정 인식에 나타난 추론 유형을 분석하여 과학 교육의 시사점을 얻는 데 있다. 연구 대상은 중학생 197명과 고등학생 200명으로 하였다. 측정에 대한 인식 조사를 위하여 검사지 PMQ1을 사용하였고, 검사지의 문항별 응답 내용은 부호화된 분석틀을 기준으로 점 추론과 집합 추론 유형으로 분석하였다. 분석한 추론 유형을 자료 수집, 자료 처리, 자료 비교로 나누어 측정 단계별 추론 유형 분포 및 학년별 집합 추론 유형 분포 차이를 분석하였다. 또한 측정의 불확실성에 대한 추론 유형 분석을 통해 각 측정 단계별 나타난 추론 유형과 비교 분석하였다. 측정 단계별 추론 유형 분포에서 집합 추론 유형은, 자료 처리에서 높게 나타났고, 자료 수집과 자료 비교에서 낮게 나타났다. 측정 단계별 학년에 따른 집합 추론 유형 분포는 자료 비교 단계에서 중학생들과 고등학생들 사이에 유의미한 차이가 있었다. 측정의 불확실성에 대한 인식은 집합 추론 유형이 높게 나타났으나 학년에 따라 유의미한 차이는 없었다. 측정을 통해 신뢰할 수 있는 결과를 얻기 위해서는 각 측정 단계에서 측정의 불확실성에 대한 인식이 일관성 있게 작용해야 하며 이는 학생들에게 측정에 대한 직접적인 교수 학습이 필요함을 시사한다.

Keywords

References

  1. 교육부 (1997a). 중학교 교육과정 해설(III)-수학, 과학, 기술∙가정-. 교육부 고시 제1997-15호.
  2. 교육부 (1997b). 고등학교 교육과정 해설-(5)수학-. 교육부 고시 제1997-15호.
  3. 김원경( 2011). 교사를 위한 확률과 통계학. 교우사.
  4. 박종찬, 강영창, 신광문, 이성묵, 이재봉(2009). 측정 개념을 가르치기 위한 실험모듈 개발과 수업적용 효과. 새물리, 58(3), 325-339.
  5. 서정아 (2002). 측정이론에 관한 중학교 1학년 학생의 선 개념 조사. 한국과학교육학회지, 22(3), 455-465.
  6. 신광문, 강영창, 이성묵, 이재봉 (2011). 대학생들의 물리실험에서 측정 활동 분석틀 개발 및 적용. 한국과학교육학회지, 31(1), 115-127.
  7. 양승갑, 박명수, 박원선, 배종숙, 성덕현, 이성길, 홍우칠 (2001). 중학교 수학 8-가, 금성출판사.
  8. 양일호, 임성만, 임재근, 송진령 (2009). 측정과 관련된 실험 활동에서 보이는 초등학생의 대푯값 선정 및 신뢰 방법 분석. 초등과학교육, 28(3), 263-276.
  9. 이봉우 (2005). 외국 과학교육과정의 탐구기준 비교 분석. 한국과학교육학회지, 25(7), 873-884.
  10. 이봉우, 김희경 (2007). 외국 과학교육과정의 관찰과 측정 기준 분석. 초등과학교육, 26(1), 87-96.
  11. 이봉우, 박보화, 김희경 (2007). 우리나라 3-10학년 과학 교과서에 나타난 기초탐구과정 분석: 관찰 및 측정 탐구요소를 중심으로. 한국과학교육학회지, 27(5), 421-431.
  12. 이재봉 (2006). 측정 자료의 오차와 불확실도에 대한 학생들의 이해. 새물리, 52(5), 436-446.
  13. 이재봉, 이성묵 (2006). 학생들의 측정불확실도 개념의 결핍으로 인한 물리탐구과정에서의 어려움 분석. 한국과학교육학회지, 26(4), 581-591.
  14. 장정화 (2004). 과학 측정활동에서 중학생들의 추론 유형, 서울대학교, 교육학석사학위논문.
  15. 한국표준과학연구원 (1998). 측정불확도표현지침. 대전: 한국표준과학연구원.
  16. American Association for the Advancement of Science (1993). Benchmarks for science literacy. NY: Oxford University Press.
  17. Allie, S., Buffler, A., Kaunda, L., Campbell, B., & Lubben, F. (1998). First-year physics students'perceptions of the quality of experimental measurements. International Journal of Science Education, 20(4), 447-459. https://doi.org/10.1080/0950069980200405
  18. Buffler, A., & Allie, S. Lubben, F., & Campbell, B. (2001). The development of first year physics students' ideas about measurement in terms of point and set paradigms. International Journal of Science Education, 23(11), 1137-1156. https://doi.org/10.1080/09500690110039567
  19. Buffler, A., Lubben, F., & Ibrahim, B. (2009). The relationship between students' views of the nature of science and their views of the nature of scientific measurement. International Journal of Science Education, 31(9), 1137-1156. https://doi.org/10.1080/09500690802189807
  20. University of Cambridge International Examinations(2010). Physics AS Level and GCE A-Level syllabus. Online Available: http://www.cie.org.uk.
  21. Gott, R., & Duggan, S. (1996). Practical work: its role in the understanding of evidence in science. International Journal of Science Education, 18(7), 791-806. https://doi.org/10.1080/0950069960180705
  22. Lubben, F., Campbell, B., Buffler, A., & Allie, S. (2001). Point and set reasoning in practical science measurement by entering university freshmen. Science Education, 85(4), 311-327. https://doi.org/10.1002/sce.1012
  23. Lubben, F., & Millar, R. (1996). Children's ideas about the reliability of experimental data. International Journal of Science Education, 18(8), 955-968. https://doi.org/10.1080/0950069960180807
  24. National Research Council(1996). National Science Education Standards. Washington, D.C, USA: National Academy Press.
  25. National Research Council(2000). Inquiry and the National Science Education Standards. Washington, D.C, USA: National Academy Press.
  26. Pillay, S., Buffler, A., Lubben, F., & Allie, S.(2008). Effectiveness of a GUM-compliant course for teaching measurement in the introductory physics laboratory. European Journal of Physics, 29, 647-659. https://doi.org/10.1088/0143-0807/29/3/024
  27. Volkwyn, T.S., Allie, S., Buffler, A., & Lubben, F.(2008). Impact of conventional laboratory course on the understanding of measurement. Physical Review Special Topics Physics Education Research, 4(010108), 1-10.

Cited by

  1. Grade and Cognition of Pre-Service Education vol.34, pp.3, 2014, https://doi.org/10.14697/jkase.2014.34.3.0197
  2. 2015 개정 교육과정에 따른 과학탐구실험 교과서에 나타난 참탐구 요소 분석 vol.63, pp.3, 2012, https://doi.org/10.5012/jkcs.2019.63.3.183
  3. 중학생의 측정의 본성에 대한 견해에 따른 일상 및 과학적 맥락에서의 그래프 구성의 차이 vol.63, pp.6, 2012, https://doi.org/10.5012/jkcs.2019.63.6.473