DOI QR코드

DOI QR Code

Immuno-stimulating Activities of Polysaccharides Isolated from Commercial Soy Sauce and Traditional Korean Soy Sauce

시판양조 및 재래식 조선간장으로부터 분리한 다당의 면역증강 활성 비교

  • Park, Hye-Ryung (Department of Food science and Biotechnology, Kyonggi University) ;
  • Lee, Moon-Su (Department of Food science and Biotechnology, Kyonggi University) ;
  • Jo, Sun-Young (Department of Food science and Biotechnology, Kyonggi University) ;
  • Won, Hye-Jin (The Research Institute of Basic Science, Kyonggi University) ;
  • Lee, Hyun-Sun (The Research Institute of Basic Science, Kyonggi University) ;
  • Lee, Ho (Department of Food science and Biotechnology, Kyonggi University) ;
  • Shin, Kwang-Soon (Department of Food science and Biotechnology, Kyonggi University)
  • 박혜령 (경기대학교 식품생물공학과) ;
  • 이문수 (경기대학교 식품생물공학과) ;
  • 조선영 (경기대학교 식품생물공학과) ;
  • 원혜진 (경기대학교 기초과학연구소) ;
  • 이현순 (경기대학교 기초과학연구소) ;
  • 이호 (경기대학교 식품생물공학과) ;
  • 신광순 (경기대학교 식품생물공학과)
  • Received : 2012.01.08
  • Accepted : 2012.02.29
  • Published : 2012.04.30

Abstract

The varying characteristics between traditional and commercial soy sauce may be initiated by raw materials and fermentation techniques for the production of $meju$ and $koji$. We examined properties regarding polysaccharides isolated from commercial soy sauce made by the $koji$ process (CSP-0) and Korean traditional soy sauce made by the $meju$ process (KTSP-0) as well as their immuno-stimulating activities. KTSP-0 had rhamnogalacturonan II (RG-II) including 1.1% of unusual monosaccharides 3-deoxy-D-$manno$-2-octulosonic acid (KDO). Anti-complementary activities of CSP-0 and KTSP- 0 were increased dose-dependently but KTSP-0 (64.7%) was higher than CSP-0 (56%) at $1,000{\mu}g/mL$. C3 activation products were identified by crossed immuno-electrophoresis. CSP-0 caused complementary activations $via$ only classical pathway while KTSP-0 caused complementary activations $via$ both alternative and classical pathways. KTSP-0 significantly increased the secretion of interleukin (IL)-6 at $8-1,000{\mu}g/mL$ and IL-12 at $40{\mu}g/mL$ on macrophages. The results suggest that the immuno-stimulating activity of KTSP-0 is greater than that of CSP-0 from anti-complementary activity.

현재 우리나라에서 시판되고 있는 대부분의 양조간장은 일본의 $koji$ 방식으로 제조되고 있는 반면, 재래식 조선간장은 자연적으로 미생물이 접종 및 발효된 메주를 이용하여 제조되고 있다. 본 연구는 일본식으로 만들어진 양조간장과 우리나라 전통방식으로 만들어진 재래식 조선간장으로부터 얻어진 다당의 특성과 면역증진활성을 비교하였다. 조선간장 유래 다당인 KTSP-0는 2-keto-3-deoxy-D-$manno$-2-octulosonic acid(KDO)(1.1%)의 구조를 가지는 rhamnogalacturonan II(RG-II)가 있음을 확인하였다. 양조간장 유래 다당 CSP-0와 KTSP-0의 보체계 활성화능을 측정한 결과 두 시료 모두 농도의존적으로 증가하는 보체계 활성을 가지고 있었으나, $1,000{\mu}g/mL$ 농도에서 KTSP-0는 64.7%, CSP-0는 56%의 활성을 나타내었다. C3의 보체계 활성 경로를 확인하기 위해 2차원 면역전기영동을 행하였다. 그 결과, CSP-0는 고전경로로만 보체계를 활성화 시키는 반면, KTSP-0는 고전경로와 부경로 모두를 통해 보체계를 활성화 시키는 것으로 나타났다. CSP-0와 KTSP-0는 비장 유래세포와 macrophage에 대한 세포독성이 없음이 확인되었으며, KTSP-0는 활성화된 복강유래 macrophage에서 IL-6는 $8-1,000{\mu}g/mL$의 비교적 넓은 범위에서, IL-12는 $40{\mu}g/mL$의 농도에서 cytokine의 분비를 증가시켰다. 본 연구를 통해 양조간장보다 조선간장이 보체계 활성화를 통해 높은 면역 증강 효과를 가지고 있는 것으로 확인되었다.

Keywords

References

  1. Yokotsuka T. Soy sauce biochemistry. Adv. Food Res. 30: 195- 329 (1986) https://doi.org/10.1016/S0065-2628(08)60350-X
  2. Lee WJ, Cho DH. Microbiological studies of Korean native soysauce fermentation. J. Korean Agric. Chem. Soc. 14: 137-148 (1971)
  3. Choi C, Choi KS, Lee SH, Hong SP, Lee HD, Bae DK. Characteristics and action pattern of $\alpha$-galactosidase from Scopulariopsis brevicaulis in korean traditional meju. Agr. Chem. Biotechnol. 41: 489-495 (1998)
  4. Kobayashi M, Hashimoto Y, Taniuchi S, Tanabe S. Degradation of wheat allergen in Japanese soy sauce. Int. J. Mol. Med. 13: 821-827 (2004)
  5. Kobayashi M, Matsushita H, Yoshida K, Tsukiyama R, Sugimura T, Yamamoto K. In vitro and in vivo anti-allergic activity of soy sauce. Int. J. Mol. Med. 14: 879-884 (2004)
  6. Benjamin H, Storkson J, Nagahara A, Pariza MW. Inhibition of benzo(a)pyrene-induced mouse forestomach neoplasia by dietary soy sauce. Cancer Res. 51: 2940-2942 (1991)
  7. Kataoka S, Liu W, Albright K, Storkson J, Pariza M. Inhibition of benzo[a]pyrene-induced mouse forestomach neoplasia and reduction of $H_{2}O_{2}$ concentration in human polymorphonuclear leucocytes by flavour components of Japanese-style fermented soy sauce. Food Chem. Toxicol. 35: 449-457 (1997) https://doi.org/10.1016/S0278-6915(97)00009-4
  8. Masuda S, Hara-Kudo Y, Kumagai S. Reduction of Escherichia coli O157:H7 populations in soy sauce, a fermented seasoning. J. Food Protect. 61: 657-661 (1998) https://doi.org/10.4315/0362-028X-61.6.657
  9. Tsuchiya H, Sato M, Watanabe I. Antiplatelet activity of soy sauce as functional seasoning. J. Agr. Food Chem. 47: 4167-4174 (1999) https://doi.org/10.1021/jf990147d
  10. Kinoshita E, Yamakoshi J, Kikuchi M. Purification and identification of an angiotensin I-converting enzyme inhibitor from soy sauce. Biosci. Biotech. Bioch. 57: 1107-1110 (1993) https://doi.org/10.1271/bbb.57.1107
  11. Matsushita H, Kobayashi M, Tsukiyama R, Yamamoto K. In vitro and in vivo immunomodulating activities of shoyu polysaccharides from soy sauce. Int. J. Mol. Med. 17: 905-909 (2006)
  12. Matsushita HF, Kobayashi M, Tsukiyama R-I, Fujimoto M, Suzuki M, Tsuji K, Yamamoto K. Stimulatory effect of shoyu polysaccharides from soy sauce on the intestinal immune system. Int. J. Mol. Med. 22: 243-247 (2008)
  13. Kobayashi M, Nagatani Y, Magishi N, Tokuriki N, Nakata Y, Tsukiyama R, Imai H, Suzuki M, Saito M, Tsuji K. Promotive effect of shoyu polysaccharides from soy sauce on iron absorption in animals and humans. Int. J. Mol. Med. 18: 1159-1163 (2006)
  14. Lee JG, Kwon KI, Choung MG, Kwin O-J, Choi JY, Im MH. Quality analysis on the size and the preparation method of meju for the preparation of Korean traditional soy sauce (ganjang). J. Appl. Biol. Chem. 52: 205-211 (2009) https://doi.org/10.3839/jabc.2009.035
  15. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal. Biochem. 28: 350-356 (1956)
  16. Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal. Biochem. 54: 484-489 (1973) https://doi.org/10.1016/0003-2697(73)90377-1
  17. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein- dye binding. Anal. Biochem. 72: 248-254 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
  18. Karkhanis YD, Zeltner JY, Jackson JJ, Carlo DJ. A new and improved microassay to determine 2-keto-3-deoxyoctonate in lipopolysaccharide of Gram-negative bacteria. Anal. Biochem. 85: 595-601 (1978) https://doi.org/10.1016/0003-2697(78)90260-9
  19. Jones TM, Albersheim P. A gas chromatographic method for the determination of aldose and uronic acid constituents of plant cell wall polysaccharides. Plant Physiol. 49: 926-936 (1972) https://doi.org/10.1104/pp.49.6.926
  20. Kabat EA, Mayer MM. Experimental Immunochemistry. 2nd ed. Thormas Publisher, Springfield, IL, USA. pp.133-240 (1965)
  21. Yamada H, Ra KS, Kiyohara H, Cyong JC, Otsuka Y. Structural characterization of an anti-complementary pectic polysaccharide from the roots of Bupleurum falcatum L. Carbohyd. Res. 189: 209-226 (1989) https://doi.org/10.1016/0008-6215(89)84098-4
  22. Shimura K, Ito H, Hibasami H. Screening of host-mediated antitumor polysaccharides by crossed immunoelectrophoresis using fresh human serum. Jpn. J. Pharmacol. 33: 403-408 (1983) https://doi.org/10.1254/jjp.33.403
  23. Hwang YC, Shin KS. Characterization of immuno-stimulating polysaccharides isolated from Korean persimmon vinegar. Korean J. Food Sci. Technol. 40: 220-227 (2008)
  24. Kim JM, Lim BK, Ho SH, Yun SH, Shin JO, Park EM, Kim DK, Kim S, Jeon ES. TNFR-Fc fusion protein expressed by in vivo electroporation improves survival rates and myocardial injury in coxsackievirus induced murine myocarditis. Biochem. Bioph. Res. Co. 344: 765-771 (2006) https://doi.org/10.1016/j.bbrc.2006.03.170
  25. Kwon MH, Sung HJ. Characteristics of immune response by polysaccharides with complement system activity. Food Sci. Ind. 30: 30-43 (1997)
  26. Inngjerdingen KT, Debes SC, Inngjerdingen M, Hokputsa S, Harding SE, Rolstad B, Michaelsen TE, Diallo D, Paulsen BS. Bioactive pectic polysaccharides from Glinus oppositifolius (L.) Aug. DC., a Malian medicinal plant, isolation and partial characterization. J. Ethnopharmacol. 101: 204-214 (2005) https://doi.org/10.1016/j.jep.2005.04.021
  27. York WS, Darvill AG, McNeil M, Albersheim P. 3-deoxy-Dmanno- 2-octulosonic acid (KDO) is a component of rhamnogalacturonan II, a pectic polysaccharide in the primary cell walls of plants. Carbohyd. Res. 138: 109-126 (1985) https://doi.org/10.1016/0008-6215(85)85228-9
  28. Holers VM. The complement system as a therapeutic target in autoimmunity. Clin. Immunol. 107: 140-151 (2003) https://doi.org/10.1016/S1521-6616(03)00034-2
  29. Thurman JM, Holers VM. The central role of the alternative complement pathway in human disease. J. Immunol. 176: 1305- 1310 (2006) https://doi.org/10.4049/jimmunol.176.3.1305
  30. Jung YJ, Chun H, Kim KI, An JH, Shin DH, Hong BS, Cho HY, Yang HC. Purified polysaccharide activating the complement system from leaves of Diospyos kaki L. Korean J. Food Sci. Technol. 34: 879-884 (2002)
  31. Kim JH, Shin KS, Lee H. Characterization and action mode of anti-complementary substance prepared from Lactobacillus plantarum. Korean J. Food Sci. Technol. 34: 290-295 (2002)
  32. Park W. Study on biological effect of multi-herbal drug KOCOP1 on mouse macrophage raw 264.7 cells. Korean J. Herbol. 23: 151-157 (2008)
  33. Joyce S. Immune recognition, response, and regulation: How T lymphocytes do it. Immunol. Res. 23: 215-228 (2001) https://doi.org/10.1385/IR:23:2-3:215
  34. Kaplanski G, Marin V, Montero-Julian F, Mantovani A, Farnarier C. IL-6: A regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol. 24: 25-29 (2003) https://doi.org/10.1016/S1471-4906(02)00013-3
  35. Tilg H, Trehu E, Atkins MB, Dinarello CA, Mier JW. Interleukin- 6 (IL-6) as an anti-inflammatory cytokine: Induction of circulating IL-1 receptor antagonist and soluble tumor necrosis factor receptor p55. Blood 83: 113-118 (1994)
  36. Xing Z, Gauldie J, Cox G, Baumann H, Jordana M, Lei XF, Achong MK. IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J. Clin. Invest. 101: 311-320 (1998) https://doi.org/10.1172/JCI1368

Cited by

  1. Immunomodulatory Effects of Polysaccharides Derived from Persimmon Leaves on Cyclophosphamide-induced Immunosuppressed Mice vol.45, pp.5, 2013, https://doi.org/10.9721/KJFST.2013.45.5.636
  2. Cheonggukjang polysaccharides enhance immune activities and prevent cyclophosphamide-induced immunosuppression vol.72, 2015, https://doi.org/10.1016/j.ijbiomac.2014.09.010
  3. Immuno-Modulatory Activity of the Crude Polysaccharide from Wild Ginseng Adventitious Root vol.25, pp.4, 2012, https://doi.org/10.9799/ksfan.2012.25.4.755
  4. Immuno-stimulating Activities of Skipjack Tuna Katsuwonus pelamis Cooking Juice Concentrates on Mouse Macrophages and Spleen Cells vol.47, pp.6, 2014, https://doi.org/10.5657/KFAS.2014.0776
  5. Quality and sensory characteristics of soy sauces containing Astragalus membranaceus by aging period vol.22, pp.5, 2015, https://doi.org/10.11002/kjfp.2015.22.5.636
  6. Quality Characteristics of Regional Traditional and Commercial Soy Sauce (Ganjang) vol.33, pp.1, 2017, https://doi.org/10.9724/kfcs.2017.33.1.45
  7. Immunostimulatory Effects of Polysaccharides Isolated from Makgeolli (Traditional Korean Rice Wine) vol.19, pp.4, 2014, https://doi.org/10.3390/molecules19045266
  8. Macrophage Activation by Polysaccharides from Korean's Commercial and Traditional Soy Sauces vol.26, pp.4, 2013, https://doi.org/10.9799/ksfan.2013.26.4.797
  9. Intestinal Immune-Modulating Activities of Polysaccharides Isolated from Commercial and Traditional Korean Soy Sauces vol.43, pp.1, 2014, https://doi.org/10.3746/jkfn.2014.43.1.009
  10. Immunomodulatory Activity of Crude Polysaccharides from Makgeolli vol.43, pp.2, 2014, https://doi.org/10.3746/jkfn.2014.43.2.238