DOI QR코드

DOI QR Code

MODULE-THEORETIC CHARACTERIZATIONS OF KRULL DOMAINS

  • Kim, Hwan-Koo (Department of Information Security Hoseo University)
  • Received : 2011.02.16
  • Published : 2012.05.31

Abstract

The following statements for an infra-Krull domain $R$ are shown to be equivalent: (1) $R$ is a Krull domain; (2) for any essentially finite $w$-module $M$ over $R$, the torsion submodule $t(M)$ of $M$ is a direct summand of $M$; (3) for any essentially finite $w$-module $M$ over $R$, $t(M){\cap}pM=pt(M)$, for all maximal $w$-ideal $p$ of $R$; (4) $R$ satisfies the $w$-radical formula; (5) the $R$-module $R{\oplus}R$ satisfies the $w$-radical formula.

Keywords

References

  1. T. Albu and C. Nastasescu, Modules sur les anneaux de Krull, Rev. Roumaine Math. Pures Appl. 21 (1976), no. 2, 133-142.
  2. N. Bourbaki, Commutative Algebra, Springer-Verlag, New York, 1989.
  3. L. Fuchs and L. Salce, Modules over Non-Noetherian Domains, Mathematical Surveys and Monographs 84, AMS, Providence, RI, 2001.
  4. R. Gilmer, Multiplicative Ideal Theory, Queen's Papers in Pure and Applied Mathematics 90, Queen's University, Kingston, Ontario, 1992.
  5. J. Jenkins and P. F. Smith, On the prime radical of a module over a commutative ring, Comm. Algebra 20 (1992), no. 12, 3593-3602. https://doi.org/10.1080/00927879208824530
  6. I. Kaplansky, A characterization of Prufer rings, J. Indian. Math. Soc. 24 (1960), 279- 281.
  7. H. Kim, Module-theoretic characterizations of t-linkative domains, Comm. Algebra 36 (2008), no. 5, 1649-1670. https://doi.org/10.1080/00927870701872513
  8. S. H. Man, One dimensional domains which satisfy the radical formula are Dedekind domains, Arch. Math. 66 (1996), no. 4, 276-279. https://doi.org/10.1007/BF01207828
  9. S. H. Man, A note on Dedekind domains, Rocky Mountain J. Math. 28 (1998), no. 2, 655-666. https://doi.org/10.1216/rmjm/1181071792
  10. M. Martin and M. Zafrullah, t-linked overrings of Noetherian weakly factorial domains, Proc. Amer. Math. Soc. 115 (1992), no. 3, 601-604.
  11. R. L. McCasland and M. E. Moore, On radicals of submodules, Comm. Algebra 19 (1991), no. 5, 1327-1341. https://doi.org/10.1080/00927879108824205
  12. M. Nishi and M. Shinagawa, Codivisorial and divisorial modules over completely integrally closed domains (I), Hiroshima Math. J. 5 (1975), no. 2, 269-292.
  13. M. Nishi and M. Shinagawa, Codivisorial and divisorial modules over completely integrally closed domains (II), Hiroshima Math. J. 5 (1975), no. 3, 461-471.
  14. F. Wang, Foundation of commutative ring theory, Preprint.
  15. F. Wang and R. L. McCasland, On w-modules over strong Mori domains, Comm. Algebra 25 (1997), no. 4, 1285-1306. https://doi.org/10.1080/00927879708825920
  16. F. Wang and R. L. McCasland, On strong Mori domains, J. Pure Appl. Algebra 135 (1999), no. 2, 155-165. https://doi.org/10.1016/S0022-4049(97)00150-3
  17. H. Yin, F. Wang, X. Zhu, and Y. Chen, w-modules over commutative rings, J. Korean Math. Soc. 48 (2011), no. 1, 207-222. https://doi.org/10.4134/JKMS.2011.48.1.207