References
- G. Borooah, A. J. Diesl, and T. J. Dorsey, Strongly clean matrix rings over commutative local rings, J. Pure Appl. Algebra 212 (2008), no. 1, 281-296. https://doi.org/10.1016/j.jpaa.2007.05.020
- H. Chen, On strongly J-clean rings, Comm. Algebra 38 (2010), no. 10, 3790-3804. https://doi.org/10.1080/00927870903286835
- H. Chen, Rings Related Stable Range Conditions, Series in Algebra 11, Hackensack, NJ: World Scientific, 2011.
- H. Chen, On uniquely clean rings, Comm. Algebra 39 (2011), no. 1, 189-198.
- A. J. Diesl, Classes of Strongly Clean Rings, Ph.D. Thesis, University of California, Berkeley, 2006.
- T. J. Dorsey, Cleanness and Strong Cleanness of Rings of Matrices, Ph.D. Thesis, University of California, Berkeley, 2006.
- L. Fan and X. Yang, A note on strongly clean matrix rings, Comm. Algebra 38 (2010), no. 3, 799-806. https://doi.org/10.1080/00927870802570693
- J. E. Humphreys, Introduction to Lie Algebra and Representation Theory, Springer- Verlag, Beijing, 2006.
- Y. Li, Strongly clean matrix rings over local rings, J. Algebra 312 (2007), no. 1, 397-404. https://doi.org/10.1016/j.jalgebra.2006.10.032
- W. K. Nicholson, Strongly clean rings and Fitting's lemma, Comm. Algebra 27 (1999), no. 8, 3583-3592. https://doi.org/10.1080/00927879908826649
- W. K. Nicholson, Clean rings: a survey, Advances in Ring Theory, World Sci. Publ., Hackensack, NJ, 2005, 181-198.
- X. Yang and Y. Zhou, Some families of strongly clean rings, Linear Algebra Appl. 425 (2007), no. 1, 119-129. https://doi.org/10.1016/j.laa.2007.03.012
Cited by
- Rings in which elements are the sum of a nilpotent and a root of a fixed polynomial that commute vol.15, pp.1, 2017, https://doi.org/10.1515/math-2017-0031
- Nil-quasipolar rings vol.20, pp.1, 2014, https://doi.org/10.1007/s40590-014-0005-y
- Strongly Clean Matrices Over Power Series vol.56, pp.2, 2016, https://doi.org/10.5666/KMJ.2016.56.2.387