DOI QR코드

DOI QR Code

와류 셀을 이용한 풍력블레이드 에어포일 주위 유동 제어

Flow Control on Wind Turbine Airfoil with a Vortex Cell

  • 강승희 (전북대학교 항공우주공학과) ;
  • 김혜웅 (대우일렉트로닉스 부평연구소) ;
  • 유기완 (전북대학교 항공우주공학과) ;
  • 이준신 (한국전력 전력연구원 녹색성장연구소)
  • 투고 : 2012.02.06
  • 심사 : 2012.04.17
  • 발행 : 2012.05.01

초록

높은 효율의 풍력터빈 블레이드을 위해 와류 셀이 장착된 에어포일의 정지상태 및 동실 속 상태에서의 유동제어 특성을 수치적으로 연구하였다. 수치기법은 Roe의 flux-difference-splitting을 사용한 격자점 중심 유한체적법과 이중시간 전진 기법을 사용하는 내재적 시간적분법을 사용하였다. 계산결과 와류 셀을 장착한 경우 셀 내부의 부압으로 인해 양항비증가를 얻을 수 있음을 확인하였다. 동실속의 경우 셀 내부의 와류에 의해 hysterisis 현상을 상당히 감소시킬 수 있음을 확인하였다.

A flow control on airfoil installed a vortex cell for high efficiency wind turbine blade in stationary and dynamic stall conditions have been numerically investigated by solving the compressible Navier-Stokes equations. The numerical scheme is based on a node-based finite-volume method with Roe's flux-difference splitting and an implicit time-integration method coupled with dual time step sub-iteration. The computed result for the airfoil in the stationary showed that lift-drag ratio increases due to low pressure by the vortex cell. The oscillating airfoil with the vortex cell showed that the magnitude of hysteresis loop is reduced due to the enhanced vortex in the cell.

키워드

참고문헌

  1. Hillmer, B., Borstelmann, T., Schaffarczyk, P. A. and Dannenberg, "Aerodynamic and Structual Design of Multi-MW Wind Turbine Blades beyond 5MW," J. of Physics, Conference Series 75, 2007.
  2. Johnson, S. J., van Dam, C. P., and Berg, D. E., "Active Load Control Techniques for Wind Turbines", SANDIA National Lab., SAND2008-4809, 2008.
  3. Ringleb, F. O., "Separation Control by Trapped Vortices," Boundary Layer and Flow Control, edited by Lachmann, G. V. Vol. 1, Pergamon Press, 1961, pp. 265 - 294.
  4. Chernyshenko, S. I., et al. "Vortex Cell Shape Optimization for Separation Control," WCCM8, Venice, Italy, 2008.
  5. Kasper, W. A., "Aircraft Wing with Vortex Generation." U.S. Patent No. 3831885, 27 Aug., 1974.
  6. Savitsky, A. I., Schukin, L. N., Kareli n, V. G., Mass, A. M., Pushkin, R. M., Shibanov, A. P., Schukin, I. L., and Fischenk i, S. V., "Method for Control of the Boundary Layer on the Aerodynamic Surface of an Aircraft and the Aircraft Provided with the Boundary Layer Control System," U.S. Patent No. 5417391, 23 May 1995.
  7. Kruppa, E. W., "A Wind Tunnel Investigation of the Kasper Vortex Concept," AIAA Paper 77-310, Jan. 1977.
  8. Donelli, R. and Iannelli, P., Chernyshenko, S., Iollo, A., and Zannetti., L., "Flow Models for a Vortex Cell," AIAA Journal Vol.47, No. 2, February 2009.
  9. Donelli, R., De Gregorio, F., and Iannelli., P., "Flow Separation Control by Trapped Vortex," AIAA Paper 2010-1409, 2010.
  10. Roe, P. L., "Approximate Riemann Solvers, Parameter Vectors, and Difference Scheme," Journal of Computational Physics, Vol. 43, pp.357-372, 1997.
  11. Ollivier-Gooch, C. F., "High-Order ENO Schemes for Unstructured Meshes Based on Least Square Reconstruction," AIAA Paper 97-0540, 1997.
  12. Haselbacher, A. C., McGuirkkk, J. J. and Page, G. J., "Finite-Volume Discretization Aspect for Viscous Flows on Mixed Unstructured Grids," AIAA, Paper 97-1946, 1997.
  13. 오우섭, 김주성, 권오준, "비정렬격자를 이용한 피칭 날개단면 주위의 비정상 점성유동 해석," 한국항공우주학회지, 제28권 제4호, pp.17-26, 2000.
  14. Somers, D., "Design and Experimental Results for the S809 Airfoil," National Renewable Energy Laboratory, NREL/SR-440-6918, 1997.
  15. Blevins, R. D., Flow-Induced Vibration, 2nd Ed., Krieger Publishing Company, 1990.
  16. Norberg, C., "Fluctuating Lift on a Circular Cylinder : Review and New Measurements," J. of Fluid and Structures, Vol. 17, 2003, pp. 57-96. https://doi.org/10.1016/S0889-9746(02)00099-3
  17. 강승희, "폐쇄형 풍동 시험부내의 정상 및 비정상 박리 흐름에 대한 Blockage 보정 기법 연구," 박사학위논문, 한국과학기술원, 2005.
  18. Choudhuri, P. G., Knight, D. D., and Visbal, M. R., "Two-Dimensional Unsteady Leading-Edge Separation on a Pitching Airfoil," AIAA J., Vol. 32, No. 4, 1994., pp. 673-681. https://doi.org/10.2514/3.12040
  19. Mehta, U. B., "Dynamic Stall of an Oscillating Airfoil," AGARD-CP-227, 1977., pp23-1-23-32.