DOI QR코드

DOI QR Code

Vulnerability Assessment for Forest Ecosystem to Climate Change Based on Spatio-temporal Information

시공간 정보기반 산림 생태계의 기후변화 취약성 평가

  • Byun, Jung-Yeon (Department of Environmental Science and environmental Engineering, Korea University) ;
  • Lee, Woo-Kyun (Department of Environmental Science and environmental Engineering, Korea University) ;
  • Choi, Sung-Ho (Department of Geography and Environment, Boston University) ;
  • Oh, Su-Hyun (Department of Climate Environment, Graduate School of Life & Environmental Sciences, Korea University) ;
  • Yoo, Seong-Jin (Department of Environmental Science and environmental Engineering, Korea University) ;
  • Kwon, Tae-Sung (Division of Forest Ecology, Korea Forest Research Institute) ;
  • Sung, Joo-Han (Division of Forest Ecology, Korea Forest Research Institute) ;
  • Woo, Jae-Wook (Department of Environmental Science and environmental Engineering, Korea University)
  • 변정연 (고려대학교 생명과학대학 환경생태공학부) ;
  • 이우균 (고려대학교 생명과학대학 환경생태공학부) ;
  • 최성호 ;
  • 오수현 (고려대학교 생명환경과학대학 기후환경학과) ;
  • 유성진 (고려대학교 생명과학대학 환경생태공학부) ;
  • 권태성 (국립산림과학원 산림생태과) ;
  • 성주한 (국립산림과학원 산림생태과) ;
  • 우재욱 (고려대학교 생명과학대학 환경생태공학부)
  • Received : 2012.01.03
  • Accepted : 2012.02.02
  • Published : 2012.02.29

Abstract

The purpose of this study was to assess the vulnerability of forest ecosystem to climate change in South Korea using socio-environmental indicators and the results of two vegetation models named as Hydrological and Thermal Analogy Group(HyTAG), and MAPSS-Century 1(MC1). The changing frequency and direction of biome types estimated by HyTAG model was used for quantifying sensitivity and adaptive capacity of forest distribution. Similarly, the variation and changing tendency of net primary production and soil carbon storage estimated by MC1 model was used for quantifying sensitivity and adaptive capacity of forest function. As socio-environmental indicators, many statistical data such as financial autonomy rate and the number of forestry officer was prepared. All indicators were standardized, and then calculated using the vulnerability assessment equation. The period of vulnerability assessment was divided into the past(1971-2000) and the future(2021-2050). To understand what policy has a priority to climate change, distribution maps of each indicators was depicted and the vulnerability results were compared among administrative districts. Evident differences could be found in entire study area. These differences were mostly derived from regionalspecific adaptive capacity. The result and methodology of this study would be helpful for the development of decision-making supporting system and policy making in forest management with respect to climate change.

본 연구의 목적은 산림생태계 분포 모델인 HyTAG모델(Hydrological and Thermal Analogy Group)과 기능 모델인 MC1 모델(MAPSS-CENTURY 1) 그리고 사회 환경적 지표를 이용하여 기후변화가 한반도 산림생태계에 미치는 영향을 파악하는 것이다. HyTAG의 식생유형분포 변화 빈도와 방향으로부터 산림식생의 민감성과 적응성을 정량화하였다. 또한 MC1으로부터 추정되는 순일차생산량 및 토양탄소저장량의 변이 및 경향으로부터 산림기능의 민감성과 적응성을 정량화하였다. 사회 환경적 지표로는 재정자주도 또는 산림관련 공무원 수 등과 같은 통계자료를 포함하였다. 모든 지표들을 정규화하고 취약성 평가식에 적용하여 취약성 결과를 도출하였다. 취약성 평가의 시간적 범위는 현재(1971-2000)와 미래(2021-2050)로 구분하였다. 국가 기후변화 정책의 우선순위를 판단하기 위해 지표 별 공간 분포 지도를 작성하고 행정구역간의 취약성을 비교한 결과, 지역별로 취약성의 차이가 있는 것으로 나타났다. 이러한 취약성 차이는 적응능력에 따라 가장 크게 좌우되는 것으로 판단되었다. 본 연구의 취약성 평가 방법 및 결과는 산림 경영적 측면에서 의사결정 시스템 개발과 기후변화에 대한 적응정책 수립의 판단 자료로 활용될 것이다.

Keywords

References

  1. 강원도, 2011. 기후변화대응지표 개발 및 지수 산정.
  2. 공우석. 2005. 지구온난화에 취약한 지표식물 선정. 한국기상학회지, 41(2-1): 263-273.
  3. 국립공원관리공단, 2005. 국립공원별 특성에 따른 공원 관리방안 연구.
  4. 산림청, 2009. 임업통계연보.
  5. 손민호, 이우균, 송철철, 2006. 지속가능한 국립공원의 관리체계 개선방안: 환경용량 기반의 u-Park 체계 수립을 중심으로, 한국환경정책.평가연구원, 5(4): 51-84.
  6. 유가영, 김인애, 2008. 기후변화 취약성 평가지표의 개발 및 도입방안, 한국환경정책.평가연구원.
  7. 이상철, 최성호, 이우균, 박태진, 오수현, 김순아, 2011. 기후변화 시나리오에 따른 산림분포 취약성 평가, 한국임학회지, 100(2): 256-265.
  8. 임종환, 신준환, 2005. 지구온난화에 따른 산림식생대 이동과 식물계절 변화. 자연보존, 130: 8-17.
  9. 한화진, 안소은, 최은진, 한기주, 이정택, 김해동, 손요환, 박용하, 조광우, 윤정호, 이은애, 김승만, 2006. 기후변화 영향평가 및 적응시스템 구축 II, 한국환경정책평가연구원
  10. 허진, 곽한빈, 이우균, 박태진, 권태협, 박선민. 2011. GIS를 이용한 기후변화에 따른 산사태 취약성 평가, 한국기후변화학회지. 2(1): 43-54.
  11. Arris, L.L. and P.S. Eagleson, 1989. Evidence of a physio-logical basis for the boreal-deciduous forest ecotone in North America, Vegetatio, 82: 55-58.
  12. Beniston, M., M. Rebetez, F. Giorgi, and M.R. Marinucci, 1994. An analysis of Regional Climate Change in Switzerland, Theretical and Applied Climatology, 49: 139-159.
  13. Bourque, P.-A. and Q.K. Hassan, 2008. Projected impacts of climate change on species distribution in the Acadian Forest region of eastern Nova Scotia, The Forestry Chronicle, 84(4): 553-557. https://doi.org/10.5558/tfc84553-4
  14. Choi, S., W.K. Lee, H.B. Kwak, S. Yoo, H.A. Choi, S. Park, and J.H. Lim, 2011a, Vulnerability Assessment of Forest Ecosystem to Climate Change in Korea using MC1 model, Journal of Forest Planning, 16: 149-161.
  15. Dale, V.H., L.A. Joyce, S. Mcnulty, R.P. Nielson, M.P. Ayres, M.D. Flannigan, P.J. Hanson, L.C. Irland, A.E. Lugo, C.J. Peterson, D. Simberloff, F.J. Swanson, B.J. Stocks, and B.M. Wotton, 2001. Climate Change and Forest Disturbances, Bioscience, 51(9): 723-734. https://doi.org/10.1641/0006-3568(2001)051[0723:CCAFD]2.0.CO;2
  16. Doi, H. and N.I. Yurlova, 2011. Consequent Effect of Parasitism on Population Dynamics, Food Webs, and Human Health Under Climate Change, A Journal of the Human Environment, 40: 332-334. https://doi.org/10.1007/s13280-010-0068-6
  17. Fussel, H.M. and T.J. Klein, 2006. Climate change vulnerability assessments: An evolution of conceptual thinking, Climate Change, 75: 301-329. https://doi.org/10.1007/s10584-006-0329-3
  18. IPCC, 2007a. In: Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, H. L. Miller, (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York.
  19. IPCC, 2007b. In: Parry, M.L., Canziani, O.F., Palutikof, J.P., Linden, P.J., Hanson, C.E. (eds) Climate change : impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the integergovernmental panel on climate change. Cambridge University Press, Cambridge.
  20. Johnston, M. and T. Williamson, 2007. A framework for assessing climate change vulnerability of the Canadian forest sector, The Forest Chronicle, 83(3): 358-361. https://doi.org/10.5558/tfc83358-3
  21. Lenihan, J.M., C. Daly, D. Bachelet, and R.P. Neilson, 1998. Simulating broad-scale fire severity in a dynamic global vegetation model, Northwest Science, 72(2): 91-103.
  22. Madronich S., R.L. McKenzie, L.O. Bjorn, and M.M. Caldwel, 1998. Changes in biologically active ultraviolet radiation reaching the earth's surface, Photochemical and Photobiological Sciences, 46: 5-19.
  23. Neilson, R.P., 1995. A model for predicting continentalscale vegetation distribution and water balance, Ecological Society of America, 42: 125-154.
  24. Niu, T., L. Chen, Z. Zhou, 2004. The Characteristics of Climate Change over the Tibetan Plateau in the Last 40 Years and the Detection of Climatic Jumps, Advances In Atmospheric Sciences, 21(2): 193-203. https://doi.org/10.1007/BF02915705
  25. Ogden A.E. and J.L. Innes, 2009. Application of Structured Decision Making to Assessment of Climate Change Vulnerabilities and Adaptation Options for Sustainable Forest Management, Ecology and Society, 14(1): 11.
  26. Olmos, S., 2001. Vulnerability and Adaptation to climate change: Concepts, Issues, Assessment Methods, Climate Change Knowledge Network.
  27. Parton, W.J., D.S. Schimel, C.V. Cole, and D.S. Ojima, 1987. Analysis of factors controlling soil organic matter levels in Great Plains grasslands, Soil Science Society of America Journal, 51: 1173-1179. https://doi.org/10.2136/sssaj1987.03615995005100050015x
  28. Pastor, J. and W.M. Post, 1988. Response of northern forts to CO2-induced climate change, Nature, 334: 55-58. https://doi.org/10.1038/334055a0
  29. UNDP, 2006. Human Development Report.
  30. Yu, L., 2006. Assessment the vulnerability of natural ecosystems to climatic change in China. Chinese Academy of Sciences. Ph.D. thesis (in Chinese) Chronicle, 83(3): 35

Cited by

  1. The Study of Adaptable Plant Species according to Warmth Index using RCP 8.5 Scenarios in Cheonan-Si vol.16, pp.3, 2013, https://doi.org/10.13087/kosert.2013.16.3.019
  2. Climate Change Vulnerability Assessment in Rural Areas - Case study in Seocheon - vol.20, pp.4, 2014, https://doi.org/10.7851/ksrp.2014.20.4.145
  3. Assessing vulnerability of forests to climate change in South Korea vol.27, pp.3, 2016, https://doi.org/10.1007/s11676-015-0201-2
  4. Climate Change Impact on Korean Forest and Forest Management Strategies vol.35, pp.3, 2017, https://doi.org/10.11626/KJEB.2017.35.3.413
  5. 대기 중 이산화탄소의 증가가 산림 토양의 화학적 풍화작용에 미치는 영향 vol.16, pp.3, 2012, https://doi.org/10.5532/kjafm.2014.16.3.169
  6. 기후변화 리스크 평가를 위한 생태계 유형분류 방안 검토 - 국내 토지피복분류 적용성을 중심으로 - vol.26, pp.6, 2012, https://doi.org/10.14249/eia.2017.26.6.385
  7. Comparison of Fuzzy AHP and AHP in Multicriteria Inventory Classification While Planning Green Infrastructure for Resilient Stream Ecosystems vol.12, pp.21, 2012, https://doi.org/10.3390/su12219035