DOI QR코드

DOI QR Code

A Preliminary Evaluation on CO2 Storage Capacity of the Southwestern Part of Ulleung Basin, Offshore, East Sea

동해 울릉분지 남서 주변부의 이산화탄소 저장 용량 예비 평가

  • Kim, Yu-Lee (E&P Technology Institute(EPTI), Korea National Oil Corporation) ;
  • Lee, Keum-Suk (Global Technology & Research Centre(GTRC)) ;
  • Jo, So-Hyun (E&P Technology Institute(EPTI), Korea National Oil Corporation) ;
  • Kim, Min-Jun (E&P Technology Institute(EPTI), Korea National Oil Corporation) ;
  • Kim, Jong-Soo (E&P Technology Institute(EPTI), Korea National Oil Corporation) ;
  • Park, Myong-Ho (E&P Technology Institute(EPTI), Korea National Oil Corporation)
  • 김유리 (한국석유공사 석유개발연구원) ;
  • 이금석 (글로벌기술지원센터) ;
  • 조소현 (한국석유공사 석유개발연구원) ;
  • 김민준 (한국석유공사 석유개발연구원) ;
  • 김종수 (한국석유공사 석유개발연구원) ;
  • 박명호 (한국석유공사 석유개발연구원)
  • Received : 2012.01.12
  • Accepted : 2012.02.08
  • Published : 2012.02.28

Abstract

A theoretical $CO_2$ storage capacity is estimated on the southwestern continental shelf margin of Ulleung Basin, offshore Korea using 2D/3D multi-channel seismic and wellbore data acquired in the area over the two decades since the late 1980s. For the first time in Korea, the present study applies an efficiency factor to the capacity calculation, together with the other required parameters. For possible $CO_2$ storage volume estimation of the study area, we interpreted the seismic data in the Gorae area from 800 m to 3,000 m below the seafloor integrated with the well data, and identified five different seismic units; the limited depth interval is considered because of fluid state of $CO_2$ and tightness of the formation. The total volumes of each seismic unit were converted with a time-depth relation inferred from the checkshot surveys before the other required parameters including porosity and density were applied to compute the potential storage capacity. The accumulated possible storage volume from the five depositional units in the study area is estimated to be approximately 5,100 Mton ($P_{50}$). The approaches made in this study will be applied to the rest area of the basin and other continental shelves (i.e., Yellow Sea and northern part of East China Sea) in the next phase.

이 연구에서는 방대한 양의 2D/3D 탄성파 자료와 시추공 자료에 대한 분석결과를 토대로 국내 최초로 대륙붕 해양분지 내 퇴적환경에 대한 저장 효율 계수를 적용하여 동해 울릉분지 남서 주변부에 대한 이산화탄소 저장 능력을 개략적으로 평가하였다. 저장 능력 평가의 중요 인자인 퇴적체의 부피 계산을 위해 유효 구간(800 m ~ 3,000 m) 내 탄성파 해석을 실시한 결과 지중저장지층으로 활용될 수 있는 5개의 퇴적 단위를 확인하였으며 시추공 자료를 이용하여 심도 보정 후 필요 매개 변수와 함께 저장 능력을 평가하였다. 산정된 이산화탄소 저장 가능 용량은 $P_{50}$ 기준 51억톤으로 이는 동해 울릉분지 남서 주변부 유효구간 내 전체 퇴적체를 대상으로 이산화탄소 지중저장을 가정한 경우이다. 이 연구 결과를 토대로 향후 정밀 분석을 통하여 보다 실증적인 저장 능력이 제시될 것이며, 저장 능력 산정을 위한 이러한 접근 방법은 서 남해 대륙붕에도 동일하게 적용되어 한반도 주변 해역의 이산화탄소 지중 저장 능력 평가를 위한 규격화된 모델을 제시할 것이다.

Keywords

References

  1. Byun, H.S. (2011) Lithostratigraphic and biostratigraphic studies of carbon storage in Korean area (Undeformed area of Ulleung basin). Unpubl. Report for MLTM's CCS Project of KNOC, 391p.
  2. Choi, K.S. (2011) High-resolution analysis and stratigraphic architecture of reservoir rocks in Block VI-1, offshore SE Korea: Implication to the CO2 storage potential of reservoir rocks. Unpubl. Report for MLTM's CCS Project of KNOC, 73p.
  3. Chough, S.K. and Barg, E. (1987) Tectonic history of Ulleung basin margin, East Sea (Sea of Japan). Geology, v.15, p.45-48. https://doi.org/10.1130/0091-7613(1987)15<45:THOUBM>2.0.CO;2
  4. Chough, S.K., Lee, H.J. and Yoon, S.H. (2000) Marine Geology of Korean Seas. Elsevier 2nd edition, 313p.
  5. CO2CRC. (2008) Storage Capacity Estimation, Site Selection and Characterisation for $CO_2$ Storage Projects. Cooperative Research Centre for Greenhouse Gas Technologies, Canberra, p.10-16.
  6. CSLF (Carbon Sequestration Leadership Forum). (2007) Estimation of $CO_2$ storage capacity in geological media. June 2007, 43p.
  7. EERC (Energy & Environmental Research Center). (2009) Development of Storage Coefficients for Carbon Dioxide Storage in Deep Saline Formations. IEA Greenhouse Gas R&D Programm, 52p.
  8. Hovorka, S.D., Doughty, C., Benson, S.M., Pruess, K. and Knox, P.R. (2004) The impact of geological heterogeneity on $CO_2$ storage in brine formations: a case study from the Texas Gulf Coast. Geological Society, London, Special Publications, v.233, p.147-163. https://doi.org/10.1144/GSL.SP.2004.233.01.10
  9. Kim, H.J., Han, S.J., Lee, G.H., Cho, H.M., Yoo, H.S., Park, G.T. and Kim, J.S. (2007) Evolution of the estern margin of Korea: constraints on the opening of the East Sea (Japan Sea). Tectonophysics, v.436, p.37-55. https://doi.org/10.1016/j.tecto.2007.02.014
  10. Lee, G.H., Kim, H.J., Suh, M.C. and Hong, J.K. (1999) Crustal structure, volcanism, and opening mode of the Ulleung Basin, East Sea (Sea of Japan). Tectonophysics, v.308, p.503-525. https://doi.org/10.1016/S0040-1951(99)00113-4
  11. Mitchum, R.M., Jr. and Vail, P.R. (1977) Seismic stratigraphy and global changes of sea level; Part 7, Seismic stratigraphic interpretation procedure: AAPG Memoir v.26, p.135-143.
  12. NETL (National Energy Technology Laboratory). (2010) Carbon Sequestration Atlas of the United States and Canada. U.S. Department of Energy, p.142-147.
  13. Oldenburg, C.M., Pruess, K. and Benson, S.M. (2001) Process modeling of $CO_2$ injection into natural gas reservoirs for carbon sequestration and enhanced gas recovery. Energy & Fuel, v.15, p.293-298. https://doi.org/10.1021/ef000247h
  14. Park, M.H., Kim, I.S. and Ryu, B.J. (2003) Framboidal pyrites in late Quaternary core sediments of the East Sea and their paleoenvironmental implications. Geosciences Journal, v.7, p.209-215. https://doi.org/10.1007/BF02910287
  15. Park, M.H., Kim, J.H., Ryu, B.J., Kim, I.S. and Chang, H.W. (2006) AMS radiocarbon dating of the marine late Pleistocene-Holocene sediment cores in the western Ulleung Basin, East/Japan Sea. Nuclear Instruments and Methods in Physics Research B, v.243, p.211-215. https://doi.org/10.1016/j.nimb.2005.08.120
  16. Park, M.H., Kim, J.H. and Kil, Y.W. (2007) Identification of the late Quaternary tephra layers in the Ulleung Basin of the East Sea using geochemical and statistical methods. Marine Geology, v.244, p.196-208. https://doi.org/10.1016/j.margeo.2007.06.006
  17. Park, Y.C., Yoo, D.G., Sung, W.M., Hwang, S.H. and Park, K.G. (2009a) Core technology deveplopment for sequestration of $CO_2$ in marine subsurface. 3rd Interagency Workshop for climate change response R&D program, Jeju Lotte Hotel, 95p.
  18. Park, Y.C., Huh, D.G., Yoo, D.G., Hwang, S.H., Lee, H.Y. and Roh, E. (2009b) A Review of Business Model for $CO_2$ Geological Storage Project in Korea. Journal of the Geological Society of Korea, v.45, p.579-587. (in Korean)
  19. SEI (Sneider Exploration Inc.). (2002) Tight formation evaluation of the B-5 Interval Gorae V, V-1and V-2. Sneider Exploration Inc., pp. 9-21.
  20. Yoon, S.H., Chough, S.K. and Park, S.J. (2003) Sequence model and its application to a Miocene shelf-slope system in the tectonically active Ulleung Basin margin, East Sea (Sea of Japan). Marine and Petroleum Geology, v.20, p.1089-1103. https://doi.org/10.1016/j.marpetgeo.2003.08.001
  21. Yoon, B.S. and Hwang, I.G. (2009) Tectonics and related depositional pattern in the SW margin of Ulleung Basin. Journal of the Geological Society of Korea, v.45, p.311-329. (in Korean)

Cited by

  1. Measurement of the scCO2 Storage Ratio for the CO2 Reservoir Rocks in Korea vol.97, 2016, https://doi.org/10.1016/j.egypro.2016.10.015
  2. Estimation of CO2 Transport Costs in South Korea Using a Techno-Economic Model vol.8, pp.12, 2015, https://doi.org/10.3390/en8032176
  3. Estimation of the CO2 storage capacity of the structural traps in the southern Jeju Basin, offshore southern Korea, northern East China Sea vol.16, pp.3, 2012, https://doi.org/10.1007/s12303-012-0026-3
  4. Hydrochemical variations in selected geothermal groundwater and carbonated springs in Korea: a baseline study for early detection of CO2 leakage vol.39, pp.1, 2017, https://doi.org/10.1007/s10653-016-9813-5
  5. The geological CO2 storage capacity of the Jeju Basin, offshore southern Korea, estimated using the storage efficiency vol.23, 2014, https://doi.org/10.1016/j.ijggc.2014.01.014
  6. Experimental Study on the Geochemical and Mineralogical Alterations in a Supercritical CO2-Groundwater-Zeolite Sample Reaction System vol.47, pp.4, 2014, https://doi.org/10.9719/EEG.2014.47.4.421
  7. Preliminary results of numerical simulation in a small-scale CO2 injection pilot site: 1. Prediction of CO2 plume migration vol.51, pp.5, 2015, https://doi.org/10.14770/jgsk.2015.51.5.487
  8. Moderately Deep Seismic Reflection Imaging of the Ulleung Basin, East Sea using Post- and Pre-Stack Migration vol.51, pp.06, 2014, https://doi.org/10.12972/ksmer.2014.51.6.845