Denoising Images by VisuShrink Technique Using the Estimated Noise Power in the Highest Equal Subband of Wavelet

웨이블릿 고주파 균열 서브밴드에서 추정된 잡음전력을 적용한 VisuShrink 기법의 영상 잡음제거

  • Received : 2011.10.04
  • Accepted : 2012.02.02
  • Published : 2012.01.30

Abstract

The highest frequency band of wavelet decomposition band is divided into 4 equal subbands and by the minimum power of the subbands and by the monotonic transform, the level adapted threshold is obtained. The adapted threshold is applied to the soft threshold technique to denoise high and middle frequency band noise of image signals. And the results of PSNRs are compared with the results obtained by the VisuShrink technique and by the technique using the monotonic transform and the weight value. The results showed the validity of this technique.

웨이블릿 분해된 최고주파 대역을 4개의 균일대역으로 서브밴드 분할한 후 이 레벨들의 전력값 중에서 최소값과 단조 변환(monotonic transform)을 이용해서 레벨 적응적 경계값을 구하였다. 이 경계값으로 ST(soft threshold) 연산자에 적용하여 고주파 및 중간 대역의 가우시안 잡음을 제거하였다. 그 결과를 VisuShrink 방법 그리고 monotonic 변환 및 가중값을 이용해서 잡음 제거한 결과와 PSNR로 비교하고 이 기법의 실용성을 밝혔다.

Keywords

References

  1. Ioannis Pitas, Digital Image Processing Algorithms, Prentice Hall, 1993, pp. 40-47.
  2. W. K. Pratt, Digital Image Processing, John Wiley & Sons Inc, 1991.
  3. R. C. Gonzalez, R. E. Woods, Digital Image Processing, Addison-Wesley, 1992.
  4. B. Vidakovic, P. Muller, "An Introduction to Wavelets", In: Bayesian Interferencein Wavelet-based Model, P. Muller and B. Vidakovic (eds.), Springer, 1999, pp.1-18 .
  5. R. R. Coifman, D. I. Donoho, "Translation-Invariant De-Noising", In:Wavelets and Statistics, A. Antoniodis, G. Oppenheim (eds.), Springer, 1995, pp. 125-150.
  6. A. Aldroubi, M. Unser "Wavelets in Medicine and Biology", CRC Press 1996, pp. 191-196.
  7. D. L. Donoho, I. M. Johnstone, "Ideal Spatial Adaptation by Wavelet Shrinkage", Biometrika, 81. 3. 1994, pp. 425-455. https://doi.org/10.1093/biomet/81.3.425
  8. H. Y. Gao, "Wavelet Shrinkage Denoising Using the Non-Negative Garrot", Journal of Computational and Graphical Statistics, 7(4), Dec. 1998, pp. 469-488.
  9. S. Mallat, a Wavelet Tour of Signal Processing, 2nd. Academic Press, 1999, pp. 434-524.
  10. D. L. Donoho, I. M. Johnstone, "Adapting to Unknown Smoothness via Wavelet Shrinkage", J.A.S.A. vol. 90, No. 432, Dec. 1995, pp. 1200-1224. https://doi.org/10.1080/01621459.1995.10476626
  11. G. Nason, "Wavelet regression by Cross-Validation", J. Roy. Statist. Soc. Ser. B, 58, 1996, pp 463-479.
  12. Y. Wang, "Function Estimation via Wavelet Shrink -age for Long-Memory Data", Ann. Statist., 24, 2, 1996, pp. 466-484. https://doi.org/10.1214/aos/1032894449
  13. N. Saito, "Simultaneous Noise Suppression and Signal Compression Using a Library of Orthonormal bases and the Minimum Description Length Criterion", In: Wavelets in eophysics, Foufoua-Georgiou and Kumar (eds.), Academic Press, 1994.
  14. 우창용. 박남천"웨이블릿 기저의 영상신호에서 단조 변환으로 추정된 잡음편차를 사용한 VisuShrink 기법의 잡음제거" 신호처리 시스템학회 논문지 제5권 2호 2004. 4
  15. Javier Portilla, Vasily Strela, Martin J. Wainwright, and Eero P Simoncelli, "Image Denoising Using Scale Mixture of Gaussians in The Wavelet Domain" IEEE Trans. Image Processing Vol. 12, No. 11, November 2003.
  16. Thierry Blu Florian Luisier "The SURE-LET Approach to Image Denoising" IEEE Trans. Image Processing Vol.16 No 11 Nov. 2007.
  17. Akram Aldroubi and Michael Uncer "Wavelets in Medicine and Biology" CRC Press
  18. S.V. Vasegh"Avanced Digital Signal Processing and Noise Reduction" Wiley, Second edition, 2000.
  19. D. L. Donoho, "De-Noising by Soft-Thresholding", IEEE. Trans. Information Theory, Vol 41. No 3. May 1995. pp. 613-627. https://doi.org/10.1109/18.382009