DOI QR코드

DOI QR Code

Performance Characteristics of Plate Heat Exchangers with Various Geometric Design Parameters

기구적 설계변수에 따른 판형열교환기의 성능특성

  • Received : 2011.11.17
  • Accepted : 2012.04.09
  • Published : 2012.06.01

Abstract

Plate heat exchangers have been widely used in many industrial applications because of their compactness and high efficiency. Even though plate heat exchangers have been investigated extensively, studies on the effects of geometric parameters other than the chevron angle are very limited in the open literature. In this study, the effects of the chevron angle, corrugation length, corrugation depth, and the number of plates on the heat transfer and pressure drop characteristics of plate heat exchangers were investigated experimentally. Based on the experimental results, empirical correlations were proposed. More than 95% of the predictions made based on the correlations had relative deviations of less than ${\pm}10%$ when compared with the measured data.

판형열교환기는 높은 효율로 인하여 다양한 산업 분야에 사용되고 있으며, 판형열교환기의 성능특성을 파악하기 위해 많은 연구가 이루어 졌다. 하지만 세브론 각을 제외한 판형열교환기의 기구적 설계변수에 따른 성능특성 파악은 상대적으로 많이 부족한 실정이다. 본 연구는 판형열교환기의 기구적 설계변수에 따른 열전달 및 압력강하 성능특성을 파악하기 위해서 세브론 각, 전열판 골 깊이, 전열판골 길이, 전열판 개수 등을 변화시키며 실험을 수행하였다. 실험결과를 바탕으로 판형열교환기의 다양한 기구적 설계변수를 반영한 열전달 및 압력강하 성능특성 상관식을 제안하였다. 실험 데이터와 제안된 판형열교환기 상관식을 이용해 예측된 데이터를 비교한 결과 약 95% 이상의 데이터가 ${\pm}10%$ 오차범위 내에 존재함을 알 수 있었다.

Keywords

References

  1. Focke, W. W., Zachariades, J. and Oliver, I., 1985, "The Effect of the Corrugation Inclination Angle on the Thermohydraulic Performance of Plate Heat Exchanger," Int. J. Heat and Mass Transfer, Vol. 28, No. 8, pp. 1469-1479. https://doi.org/10.1016/0017-9310(85)90249-2
  2. Heavner, R. L., Kumar, H. and Wanniarachchi, A. S., 1993, "Performance of an Industrial Plate Heat Exchanger: Effect of Chevron angle," Heat Transfer, Vol. 89, No. 295, pp. 262-267.
  3. Muley, A. and Manglik, R. M., 1999, "Experimental Study of Turbulent Flow Heat Transfer and Pressure Drop in a Plate Heat Exchanger with Chevron Plates," ASME J. Heat Transfer, Vol. 121, No. 1, pp. 110-117. https://doi.org/10.1115/1.2825923
  4. Martin, H., 1996, "A Theoretical Approach to Predict the Performance of Chevron-type Plate Heat Exchangers," Chemical Engineering and Processing, Vol. 35, No. 4, pp. 301-310. https://doi.org/10.1016/0255-2701(95)04129-X
  5. Dovic, D., Palm, B. and Svaic, S., 2009, "Generalized Correlation for Predicting Heat Transfer and Pressure Drop in Plate Heat Exchanger Channels of Arbitrary Geometry," Int. J. Heat and Mass Transfer, Vol. 52, No. 19-20, pp. 4553-4563. https://doi.org/10.1016/j.ijheatmasstransfer.2009.03.074
  6. Shah, R. K., 1975, "Laminar Flow Friction and Forced Convection Heat Transfer in Ducts of Arbitrary Geometry," Int. J. Heat and Mass Transfer, Vol. 18, No. 7-8, pp. 849-862. https://doi.org/10.1016/0017-9310(75)90176-3
  7. Fernandez-Seara, J., Uhia, F. J. and Sieres, J., 2007, "Laboratory Practices With The Wilson Plot Method," Experimental Heat Transfer, Vol. 20, No. 2, pp. 123-135. https://doi.org/10.1080/08916150601091415
  8. Moffatt, R. J., 1988, "Describing the Uncertainties in Experimental Results," Experimental Thermal and Fluid Science, Vol. 1, pp. 3-17. https://doi.org/10.1016/0894-1777(88)90043-X
  9. Heggs, P. J., Sabdham, P., Hallam, R. A. and Walton, C., 1997, "Local Transfer Coefficients in Corrugated Plate Heat Exchanger Channels," Chemical Engineering Research and Design, Vol. 75, No. 7, pp. 641-645. https://doi.org/10.1205/026387697524254