References
- Chaudhuri, J. and F. W. Alt. 2004. Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat. Rev. Immunol. 4: 541-552. https://doi.org/10.1038/nri1395
- Di Noia, J. M. and M. S. Neuberger. 2007. Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem. 76: 1-22. https://doi.org/10.1146/annurev.biochem.76.061705.090740
- Peled, J. U., F. L. Kuang, M. D. Iglesias-Ussel, S. Roa, S. L. Kalis, M. F. Goodman, and M. D. Scharff. 2008. The biochemistry of somatic hypermutation. Annu. Rev. Immunol. 26: 481-511. https://doi.org/10.1146/annurev.immunol.26.021607.090236
- Stavnezer, J., J. E. Guikema, and C. E. Schrader. 2008. Mechanism and regulation of class switch recombination. Annu. Rev. Immunol. 26: 261-292. https://doi.org/10.1146/annurev.immunol.26.021607.090248
- Arakawa, H., J. Hauschild, and J. M. Buerstedde. 2002. Requirement of the activation-induced deaminase (AID) gene for immunoglobulin gene conversion. Science 295: 1301-1306. https://doi.org/10.1126/science.1067308
- Harris, R. S., J. E. Sale, S. K. Petersen-Mahrt, and M. S. Neuberger. 2002. AID is essential for immunoglobulin V gene conversion in a cultured B cell line. Curr. Biol. 12:435-438. https://doi.org/10.1016/S0960-9822(02)00717-0
- Muramatsu, M., K. Kinoshita, S. Fagarasan, S. Yamada, Y. Shinkai, and T. Honjo. 2000. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102: 553-563. https://doi.org/10.1016/S0092-8674(00)00078-7
- Revy, P., T. Muto, Y. Levy, F. Geissmann, A. Plebani, O. Sanal, N. Catalan, M. Forveille, R. Dufourcq-Labelouse, A. Gennery, I. Tezcan, F. Ersoy, H. Kayserili, A. G. Ugazio, N. Brousse, M. Muramatsu, L. D. Notarangelo, K. Kinoshita, T. Honjo, A. Fischer, and A. Durandy. 2000. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 102: 565-575. https://doi.org/10.1016/S0092-8674(00)00079-9
- Mechtcheriakova, D., M. Svoboda, A. Meshcheryakova, and E. Jensen-Jarolim. 2012. Activation-induced cytidine deaminase (AID) linking immunity, chronic inflammation, and cancer. Cancer Immunol. Immunother. 61: 1591-1598. https://doi.org/10.1007/s00262-012-1255-z
- Muramatsu, M., V. S. Sankaranand, S. Anant, M. Sugai, K. Kinoshita, N. O. Davidson, and T. Honjo. 1999. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem. 274: 18470-18476. https://doi.org/10.1074/jbc.274.26.18470
- Okazaki, I. M., K. Kinoshita, M. Muramatsu, K. Yoshikawa, and T. Honjo. 2002. The AID enzyme induces class switch recombination in fibroblasts. Nature 416: 340-345. https://doi.org/10.1038/nature727
- Yoshikawa, K., I. M. Okazaki, T. Eto, K. Kinoshita, M. Muramatsu, H. Nagaoka, and T. Honjo. 2002. AID enzyme- induced hypermutation in an actively transcribed gene in fibroblasts. Science 296: 2033-2036. https://doi.org/10.1126/science.1071556
- Stavnezer, J. 2000. Molecular processes that regulate class switching. Curr. Top. Microbiol. Immunol. 245: 127-168.
- Jung, S., K. Rajewsky, and A. Radbruch. 1993. Shutdown of class switch recombination by deletion of a switch region control element. Science 259: 984-987. https://doi.org/10.1126/science.8438159
- Petersen-Mahrt, S. K., R. S. Harris, and M. S. Neuberger. 2002. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418: 99-103.
- Bransteitter, R., P. Pham, M. D. Scharff, and M. F. Goodman. 2003. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl. Acad. Sci. U.S.A. 100:4102-4107. https://doi.org/10.1073/pnas.0730835100
- Chaudhuri, J., M. Tian, C. Khuong, K. Chua, E. Pinaud, and F. W. Alt. 2003. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422: 726-730. https://doi.org/10.1038/nature01574
- Dickerson, S. K., E. Market, E. Besmer, and F. N. Papavasiliou. 2003. AID mediates hypermutation by deaminating single stranded DNA. J. Exp. Med. 197: 1291-1296. https://doi.org/10.1084/jem.20030481
- Pham, P., R. Bransteitter, J. Petruska, and M. F. Goodman. 2003. Processive AID-catalysed cytosine deamination on single- stranded DNA simulates somatic hypermutation. Nature 424: 103-107. https://doi.org/10.1038/nature01760
- Ramiro, A. R., P. Stavropoulos, M. Jankovic, and M. C. Nussenzweig. 2003. Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nat. Immunol. 4: 452-456. https://doi.org/10.1038/ni920
- Sohail, A., J. Klapacz, M. Samaranayake, A. Ullah, and A. S. Bhagwat. 2003. Human activation-induced cytidine deaminase causes transcription-dependent, strand-biased C to U deaminations. Nucleic Acids Res. 31: 2990-2994. https://doi.org/10.1093/nar/gkg464
- Neuberger, M. S., J. M. Di Noia, R. C. Beale, G. T. Williams, Z. Yang, and C. Rada. 2005. Somatic hypermutation at A.T pairs: polymerase error versus dUTP incorporation. Nat. Rev. Immunol. 5: 171-178. https://doi.org/10.1038/nri1553
- Guikema, J. E., E. K. Linehan, D. Tsuchimoto, Y. Nakabeppu, P. R. Strauss, J. Stavnezer, and C. E. Schrader. 2007. APE1- and APE2-dependent DNA breaks in immunoglobulin class switch recombination. J. Exp. Med. 204: 3017-3026. https://doi.org/10.1084/jem.20071289
- Stavnezer, J. 2011. Complex regulation and function of activation- induced cytidine deaminase. Trends Immunol. 32: 194-201. https://doi.org/10.1016/j.it.2011.03.003
- Pavri, R. and M. C. Nussenzweig. 2011. AID targeting in antibody diversity. Adv. Immunol. 110: 1-26.
- Arakawa, H. and J. M. Buerstedde. 2009. Activation-induced cytidine deaminase-mediated hypermutation in the DT40cell line. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 364: 639-644. https://doi.org/10.1098/rstb.2008.0202
- Kuraoka, M., T. M. Holl, D. Liao, M. Womble, D. W. Cain, A. E. Reynolds, and G. Kelsoe. 2011. Activation-induced cytidine deaminase mediates central tolerance in B cells. Proc. Natl. Acad. Sci. U.S.A. 108: 11560-11565. https://doi.org/10.1073/pnas.1102571108
- Meyers, G., Y. S. Ng, J. M. Bannock, A. Lavoie, J. E. Walter, L. D. Notarangelo, S. S. Kilic, G. Aksu, M. Debré, F. Rieux-Laucat, M. E. Conley, C. Cunningham-Rundles, A. Durandy, and E. Meffre. 2011. Activation-induced cytidine deaminase (AID) is required for B-cell tolerance in humans. Proc. Natl. Acad. Sci. U.S.A. 108: 11554-11559. https://doi.org/10.1073/pnas.1102600108
- Kuraoka, M. and G. Kelsoe. 2011. A novel role for activation- induced cytidine deaminase: central B-cell tolerance. Cell Cycle 10: 3423-3424. https://doi.org/10.4161/cc.10.20.17693
- Péron, S., B. Laffleur, N. Denis-Lagache, J. Cook-Moreau, A. Tinguely, L. Delpy, Y. Denizot, E. Pinaud, and M. Cogne. 2012. AID-driven deletion causes immunoglobulin heavy chain locus suicide recombination in B cells. Science 336: 931-934. https://doi.org/10.1126/science.1218692
- Nagaoka, H., T. H. Tran, M. Kobayashi, M. Aida, and T. Honjo. 2010. Preventing AID, a physiological mutator, from deleterious activation: regulation of the genomic instability that is associated with antibody diversity. Int. Immunol. 22: 227-235. https://doi.org/10.1093/intimm/dxq023
-
Pone, E. J., J. Zhang, T. Mai, C. A. White, G. Li, J. K. Sakakura, P. J. Patel, A. Al-Qahtani, H. Zan, Z. Xu, and P. Casali. 2012. BCR-signalling synergizes with TLR-signalling for induction of AID and immunoglobulin class-switching through the non-canonical NF-
$\kappa B$ pathway. Nat. Commun. 3: 767. https://doi.org/10.1038/ncomms1769 - Xu, Z., H. Zan, E. J. Pone, T. Mai, and P. Casali. 2012. Immunoglobulin class-switch DNA recombination: induction, targeting and beyond. Nat. Rev. Immunol. 12: 517-531. https://doi.org/10.1038/nri3216
- Zan, H. and P. Casali. 2012. Regulation of Aicda expression and AID activity. Autoimmunity doi:10.3109/08916934.2012. 749244.
- Kim, R. J., H. A. Kim, J. B. Park, S. R. Park, S. H. Jeon, G. Y. Seo, D. W. Seo, S. R. Seo, G. T. Chun, N. S. Kim, S. W. Yie, W. H. Byeon, and P. H. Kim. 2007. IL-4-induced AID expression and its relevance to IgA class switch recombination. Biochem. Biophys. Res. Commun. 361: 398-403. https://doi.org/10.1016/j.bbrc.2007.07.022
- Kim, H. A., G. Y. Seo, and P. H. Kim. 2011. Macrophage- derived BAFF induces AID expression through the p38MAPK/CREB and JNK/AP-1 pathways. J. Leukoc. Biol. 89: 393-398. https://doi.org/10.1189/jlb.1209787
- Park, S. R., H. Zan, Z. Pal, J. Zhang, A. Al-Qahtani, E. J. Pone, Z. Xu, T. Mai, and P. Casali. 2009. HoxC4 binds to the promoter of the cytidine deaminase AID gene to induce AID expression, class-switch DNA recombination and somatic hypermutation. Nat. Immunol. 10: 540-550. https://doi.org/10.1038/ni.1725
-
Park, S. R., P. H. Kim, K. S. Lee, S. H. Lee, G. Y. Seo, Y. C. Yoo, J. Lee, and P. Casali. 2012. APRIL stimulates NF-
$\kappa B$ -mediated HoxC4 induction for AID expression in mouse B cells. Cytokine doi:10.1016/j.cyto.2012.10.018. - Seidl, T., T. Whittall, K. Babaahmady, and T. Lehner. 2012. B-cell agonists up-regulate AID and APOBEC3G deaminases, which induce IgA and IgG class antibodies and anti-viral function. Immunology 135: 207-215. https://doi.org/10.1111/j.1365-2567.2011.03524.x
- Lee, M. R., G. Y. Seo, Y. M. Kim, and P. H. Kim. 2011. iNOS potentiates mouse Ig isotype switching through AID expression. Biochem. Biophys. Res. Commun. 410: 602-607. https://doi.org/10.1016/j.bbrc.2011.06.035
- Hauser, J., N. Sveshnikova, A. Wallenius, S. Baradaran, J. Saarikettu, and T. Grundström. 2008. B-cell receptor activation inhibits AID expression through calmodulin inhibition of E-proteins. Proc. Natl. Acad. Sci. U.S.A. 105: 1267-1272. https://doi.org/10.1073/pnas.0708220105
- Pauklin, S. and S. K. Petersen-Mahrt. 2009. Progesterone inhibits activation-induced deaminase by bindingto the promoter. J. Immunol. 183: 1238-1244. https://doi.org/10.4049/jimmunol.0803915
- Sayegh, C. E., M. W. Quong, Y. Agata, and C. Murre. 2003. E-proteins directly regulate expression of activation-induced deaminase in mature B cells. Nat. Immunol. 4: 586-593. https://doi.org/10.1038/ni923
- Gonda, H., M. Sugai, Y. Nambu, T. Katakai, Y. Agata, K. J. Mori, Y. Yokota, and A. Shimizu. 2003. The balance between Pax5 and Id2 activities is the key to AID gene expression. J. Exp. Med. 198: 1427-1437. https://doi.org/10.1084/jem.20030802
- Lee, C. H., M. Melchers, H. Wang, T. A. Torrey, R. Slota, C. F. Qi, J. Y. Kim, P. Lugar, H. J. Kong, L. Farrington, B. van der Zouwen, J. X. Zhou, V. Lougaris, P. E. Lipsky, A. C. Grammer, and H. C. 3rd Morse. 2006. Regulation of the germinal center gene program by interferon (IFN) regulatory factor 8/IFN consensus sequence-binding protein. J. Exp. Med. 203: 63-72. https://doi.org/10.1084/jem.20051450
- Yadav, A., A. Olaru, M. Saltis, A. Setren, J. Cerny, and F. Livák. 2006. Identification of a ubiquitously active promoter of the murine activation-induced cytidine deaminase (AICDA) gene. Mol. Immunol. 43: 529-541. https://doi.org/10.1016/j.molimm.2005.05.007
- Tran, T. H., M. Nakata, K. Suzuki, N. A. Begum, R. Shinkura, S. Fagarasan, T. Honjo, and H. Nagaoka. 2010. B cell-specificand stimulation-responsive enhancers derepress Aicda by overcoming the effects of silencers. Nat. Immunol. 11: 148-154. https://doi.org/10.1038/ni.1829
- Pauklin, S., I. V. Sernández, G. Bachmann, A. R. Ramiro, and S. K. Petersen-Mahrt. 2009. Estrogen directly activates AID transcription and function. J. Exp. Med. 206: 99-111. https://doi.org/10.1084/jem.20080521
- Mai, T., H. Zan, J. Zhang, J. S. Hawkins, Z. Xu, and P. Casali. 2010. Estrogen receptors bind to and activate the HOXC4/HoxC4 promoter to potentiate HoxC4-mediated activation- induced cytosine deaminase induction, immunoglobulin class switch DNA recombination, and somatic hypermutation. J. Biol. Chem. 285: 37797-37810. https://doi.org/10.1074/jbc.M110.169086
- Lee, H., J. S. Trott, S. Haque, S. McCormick, N. Chiorazzi,and P. K. Mongini. 2010. A cyclooxygenase-2/prostaglandin E2 pathway augments activation-induced cytosine deaminase expression within replicating human B cells. J. Immunol. 185: 5300-5314. https://doi.org/10.4049/jimmunol.1000574
- Ise, W., M. Kohyama, B. U. Schraml, T. Zhang, B. Schwer, U. Basu, F. W. Alt, J. Tang, E. M. Oltz, T. L. Murphy, and K. M. Murphy. 2011. Nat. Immunol. 12: 536-543. https://doi.org/10.1038/ni.2037
- Luo, H. and M. Tian. 2010. Transcription factors PU.1 and IRF4 regulate activation induced cytidine deaminase in chicken B cells. Mol. Immunol. 47: 1383-1395. https://doi.org/10.1016/j.molimm.2010.02.016
- Pritchard, C. C., H. H. Cheng, and M. Tewari. 2012. Micro- RNA profiling: approaches and considerations. Nat. Rev. Genet. 13: 358-369.
- Teng, G., P. Hakimpour, P. Landgraf, A. Rice, T. Tuschl, R. Casellas, and F. N. Papavasiliou. 2008. MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity 28: 621-629. https://doi.org/10.1016/j.immuni.2008.03.015
- Dorsett, Y., K. M. McBride, M. Jankovic, A. Gazumyan, T. H. Thai, D. F. Robbiani, M. Di Virgilio, B. Reina San-Martin, G. Heidkamp, T. A. Schwickert, T. Eisenreich, K. Rajewsky, and M. C. Nussenzweig. 2008. MicroRNA-155 suppresses activation- induced cytidine deaminase-mediated Myc-Igh translocation. Immunity 28: 630-638. https://doi.org/10.1016/j.immuni.2008.04.002
- de Yebenes, V. G., L. Belver, D. G. Pisano, S. Gonzalez, A. Villasante, C. Croce, L. He, and A. R. Ramiro. 2008. miR-181b negatively regulates activation-induced cytidine deaminase in B cells. J. Exp. Med. 205: 2199-2206. https://doi.org/10.1084/jem.20080579
- Borchert, G. M., N. W. Holton, and E. D. Larson. 2011. Repression of human activation induced cytidine deaminase by miR-93 and miR-155. BMC Cancer 11: 347. https://doi.org/10.1186/1471-2407-11-347
- Chaudhuri, J., C. Khuong, and F. W. Alt. 2004. Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature 430: 992-998. https://doi.org/10.1038/nature02821
- Basu, U., J. Chaudhuri, C. Alpert, S. Dutt, S. Ranganath, G. Li, J. P. Schrum, J. P. Manis, and F. W. Alt. 2005. The AID antibody diversification enzyme is regulatedby protein kinase A phosphorylation. Nature 438: 508-511. https://doi.org/10.1038/nature04255
- McBride, K. M., A. Gazumyan, E. M. Woo, V. M. Barreto, D. F. Robbiani, B. T. Chait, and M. C. Nussenzweig. 2006. Regulation of hypermutation by activation-induced cytidine deaminase phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 103: 8798-8803. https://doi.org/10.1073/pnas.0603272103
- McBride, K. M., A. Gazumyan, E. M. Woo, T. A. Schwickert, B. T. Chait, and M. C. Nussenzweig. 2008. Regulation of class switch recombination and somatic mutation by AID phosphorylation. J. Exp. Med. 205: 2585-2594. https://doi.org/10.1084/jem.20081319
- Basu, U., Y. Wang, and F. W. Alt. 2008. Evolution of phosphorylation- dependent regulation of activation-induced cytidine deaminase. Mol. Cell 32: 285-291. https://doi.org/10.1016/j.molcel.2008.08.019
- Cheng, H. L., B. Q. Vuong, U. Basu, A. Franklin, B. Schwer, J. Astarita, R. T. Phan, A. Datta, J. Manis, F. W. Alt, and J. Chaudhuri. 2009. Integrity of the AID serine-38 phosphorylation site is critical for class switch recombination and somatic hypermutation in mice. Proc. Natl. Acad. Sci. U.S.A. 106: 2717-2722. https://doi.org/10.1073/pnas.0812304106
- Gazumyan, A., K. Timachova, G. Yuen, E. Siden, M. Di Virgilio, E. M. Woo, B. T. Chait, B. Reina San-Martin, M. C. Nussenzweig, and K. M. McBride. 2011. Amino-terminal phosphorylation of activation-induced cytidine deaminase suppresses c-myc/IgH translocation. Mol. Cell. Biol. 31:442-449. https://doi.org/10.1128/MCB.00349-10
- Demorest, Z. L., M. Li, and R. S. Harris. 2011. Phosphorylation directly regulates theintrinsic DNA cytidine deaminase activity of activation-induced deaminase and APOBEC3G protein. J. Biol. Chem. 286: 26568-26575. https://doi.org/10.1074/jbc.M111.235721
- Li, G., E. J. Pone, D. C. Tran, P. J. Patel, L. Dao, Z. Xu, and P. Casali. 2012. Iron inhibits activation-induced cytidine deaminase enzymatic activity and modulates immunoglobulin class switch DNA recombination. J. Biol. Chem. 287:21520-21529. https://doi.org/10.1074/jbc.M112.366732
- Orthwein, A., A. M. Patenaude, B. Affar el, A. Lamarre, J. C. Young, and J. M. Di Noia. 2010. Regulation of activation- induced deaminase stability and antibody gene diversification by Hsp90. J. Exp. Med. 207: 2751-2765. https://doi.org/10.1084/jem.20101321
- Orthwein, A., A. Zahn, S. P. Methot, D. Godin, S. G. Conticello, K. Terada, and J. M. Di Noia. 2011. Optimal functional levels of activation-induced deaminasespecifically require the Hsp40 DnaJa1. EMBO J. 31: 679-691.
-
Häsler, J., C. Rada, and M. S. Neuberger. 2011. Cytoplasmic activation-induced cytidine deaminase (AID) exists in stoichiometric complex with translation elongation factor
$1\alpha$ (eEF1A). Proc. Natl. Acad. Sci. U.S.A. 108: 18366-18371. https://doi.org/10.1073/pnas.1106729108 - Geisberger, R., C. Rada, and M. S. Neuberger. 2009. The stability of AID and its function in class-switching are critically sensitive to the identity of its nuclear-export sequence. Proc. Natl. Acad. Sci. U.S.A. 106: 6736-6741. https://doi.org/10.1073/pnas.0810808106
- Ellyard, J. I., A. S. Benk, B. Taylor, C. Rada, and M. S. Neuberger. 2011. The dependence of Ig class-switching on the nuclear export sequence of AID likely reflects interaction with factors additional to Crm1 exportin. Eur. J. Immunol. 41: 485-490. https://doi.org/10.1002/eji.201041011
- Arioka, Y., A. Watanabe, K. Saito, and Y. Yamada. 2012. Activation-induced cytidine deaminase alters the subcellular localization of Tet family proteins. PLoS One 7: e45031.
- Conticello, S. G., K. Ganesh, K. Xue, M. Lu, C. Rada, M. S. Neuberger. 2008. Interaction between antibody-diversification enzyme AID and spliceosome-associated factor CTNNBL1. Mol. Cell 31: 474-484. https://doi.org/10.1016/j.molcel.2008.07.009
- Hu, Y., I. Ericsson, K. Torseth, S. P. Methot, O. Sundheim, N. B. Liabakk, G. Slupphaug, J. M. Di Noia, H. E. Krokan, and B. Kavli. 2012. A Combined Nuclear and Nucleolar Localization Motif in Activation-Induced Cytidine Deaminase (AID) Controls Immunoglobulin Class Switching. J. Mol. Biol. doi:10.1016/j.jmb.2012.11.026.
- Zaprazna, K. and M. L. Atchison. 2012. YY1 controls immunoglobulin class switch recombination and nuclear activation- induced deaminase levels. Mol. Cell. Biol. 32: 1542-1554. https://doi.org/10.1128/MCB.05989-11
-
Uchimura, Y., L. F. Barton, C. Rada, and M. S. Neuberger. 2011. REG-
$\gamma$ associates with and modulates the abundance of nuclear activation-induced deaminase. J. Exp. Med. 208: 2385-2391. https://doi.org/10.1084/jem.20110856 - Vuong, B. Q., M. Lee, S. Kabir, C. Irimia, S. Macchiarulo, G. S. McKnight, and J. Chaudhuri. 2009. Specific recruitment of protein kinase A tothe immunoglobulin locus regulates class-switch recombination. Nat. Immunol. 10: 420-426.78. Xu, Z., Z. Fulop, G. Wu, E. J. Pone, J. Zhang, T. Mai, L. M. Thomas, A. Al-Qahtani, C. A. White, S. R. Park, P. Steinacker, Z. Li, J. 3rd. Yates, B. Herron, M. Otto, H. Zan, H. Fu, and P. Casali. 2010. 14-3-3 adaptor proteins recruit AID to 5'-AGCT-3'-rich switch regions for class switch recombination. Nat. Struct. Mol. Biol. 17: 1124-1135. https://doi.org/10.1038/nsmb.1884
- Xu, Z., Z. Fulop, G. Wu, E. J. Pone, J. Zhang, T. Mai, L. M. Thomas, A. Al-Qahtani, C. A. White, S. R. Park, P. Steinacker, Z. Li, J. 3rd. Yates, B. Herron, M. Otto, H. Zan, H. Fu, and P. Casali. 2010. 14-3-3 adaptor proteins recruit AID to 5'-AGCT-3'-rich switch regions for class switch recombination. Nat. Struct. Mol. Biol. 17: 1124-1135. https://doi.org/10.1038/nsmb.1884
- Nowak, U., A. J. Matthews, S. Zheng, and J. Chaudhuri. 2011. The splicing regulator PTBP2 interacts with the cytidine deaminase AID and promotes binding of AID to switch-region DNA. Nat. Immunol. 12: 160-166. https://doi.org/10.1038/ni.1977
- Basu, U., F. L. Meng, C. Keim, V. Grinstein, E. Pefanis, J. Eccleston, T. Zhang, D. Myers, C. R. Wasserman, D. R. Wesemann, K. Januszyk, R. I. Gregory, H. Deng, C. D. Lima, and F. W. Alt. 2011. The RNA exosome targets the AID cytidine deaminase to both strands of transcribed duplex DNA substrates. Cell 144: 353-363. https://doi.org/10.1016/j.cell.2011.01.001
- Jeevan-Raj, B. P., I. Robert, V. Heyer, A. Page, J. H. Wang, F. Cammas, F. W. Alt, R. Losson, and B. Reina-San-Martin. 2011. Epigenetic tethering of AID to the donor switch region during immunoglobulin class switch recombination. J. Exp. Med. 208: 1649-1660. https://doi.org/10.1084/jem.20110118
- Ranjit, S., L. Khair, E. K. Linehan, A. J. Ucher, M. Chakrabarti, C. E. Schrader, and J. Stavnezer. 2011. AID binds cooperatively with UNG and Msh2-Msh6 to Ig switch regions dependent upon the AID C terminus. J. Immunol. 187: 2464-2475. https://doi.org/10.4049/jimmunol.1101406
- Zan, H., C. A. White, L. M. Thomas, T. Mai, G. Li, Z. Xu, J. Zhang, and P. Casali. 2012. Rev1 recruits ung to switch regions and enhances du glycosylation for immunoglobulin class switch DNA recombination. Cell Rep. 2: 1220-1232. https://doi.org/10.1016/j.celrep.2012.09.029
- Stanlie, A., N. A. Begum, H. Akiyama, and T. Honjo. 2012. The DSIF subunits Spt4 and Spt5 have distinct roles at various phases of immunoglobulin class switch recombination. PLoS Genet. 8: e1002675. https://doi.org/10.1371/journal.pgen.1002675
- Pavri, R., A. Gazumyan, M. Jankovic, M. Di Virgilio, I. Klein, C. Ansarah-Sobrinho, W. Resch, A. Yamane, B. Reina San-Martin, V. Barreto, T. J. Nieland, D. E. Root, R. Casellas, and M. C. Nussenzweig. 2010. Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5. Cell 143: 122-133. https://doi.org/10.1016/j.cell.2010.09.017
- Okazaki, I. M., K. Okawa, M. Kobayashi, K. Yoshikawa, S. Kawamoto, H. Nagaoka, R. Shinkura, Y. Kitawaki, H. Taniguchi, T. Natsume, S. Iemura, and T. Honjo. 2011. Histone chaperone Spt6 is required for class switch recombination but not somatic hypermutation. Proc. Natl. Acad. Sci. U.S.A. 108: 7920-7925. https://doi.org/10.1073/pnas.1104423108
- Begum, N. A., A. Stanlie, M. Nakata, H. Akiyama, and T. Honjo. 2012. The histone chaperone Spt6 is requiredfor activation- induced cytidine deaminase target determination through H3K4me3 regulation. J. Biol. Chem. 287: 32415-32429. https://doi.org/10.1074/jbc.M112.351569
- Maeda, K., S. K. Singh, K. Eda, M. Kitabatake, P. Pham, M. F. Goodman, and N. Sakaguchi. 2010. GANP-mediated recruitment of activation-induced cytidine deaminase to cell nuclei and to immunoglobulin variable region DNA. J. Biol.Chem. 285: 23945-23953. https://doi.org/10.1074/jbc.M110.131441
- Tanaka, A., H. M. Shen, S. Ratnam, P. Kodgire, and U. Storb. 2010. Attracting AIDto targets of somatic hypermutation. J. Exp. Med. 207: 405-415. https://doi.org/10.1084/jem.20090821
- Kim, Y. and M. Tian. 2009. NF-kappaB family of transcription factor facilitates gene conversion in chicken B cells. Mol. Immunol. 46: 3283-3291. https://doi.org/10.1016/j.molimm.2009.07.027
- Kim, Y. and M. Tian. 2010. The recruitment of activation induced cytidine deaminase to the immunoglobulin locus by a regulatory element. Mol. Immunol. 47: 1860-1865. https://doi.org/10.1016/j.molimm.2010.02.025
- Kanehiro, Y., K. Todo, M. Negishi, J. Fukuoka, W. Gan, T. Hikasa, Y. Kaga, M. Takemoto, M. Magari, X. Li, J. L. Manley, H. Ohmori, and N. Kanayama. 2012. Activation-induced cytidine deaminase (AID)-dependent somatichypermutation requires a splice isoform of the serine/arginine-rich (SR) protein SRSF1. Proc. Natl. Acad. Sci. U.S.A. 109: 1216-1221. https://doi.org/10.1073/pnas.1120368109
- Robbiani, D. F. and M. C. Nussenzweig. 2012. Chromosome Translocation, B Cell Lymphoma, and Activation-induced Cytidine Deaminase. Annu. Rev. Pathol. [Epub ahead of print]
- Staszewski, O., R. E. Baker, A. J. Ucher, R. Martier, J. Stavnezer, and J. E. Guikema. 2011. Activation-induced cytidine deaminase induces reproducible DNA breaks at many non-Ig Loci in activated B cells. Mol. Cell 41: 232-242. https://doi.org/10.1016/j.molcel.2011.01.007
- Greisman, H. A., Z. Lu, A. G. Tsai, T. C. Greiner, H. S. Yi, and M. R. Lieber. 2012. IgH partner breakpoint sequences provide evidence that AID initiates t(11;14) and t(8;14) chromosomal breaks in mantle cell and Burkitt lymphomas. Blood 120: 2864-2867. https://doi.org/10.1182/blood-2012-02-412791
- Robbiani, D. F., S. Bunting, N. Feldhahn, A. Bothmer, J. Camps, S. Deroubaix, K. M. McBride, I. A. Klein, G. Stone, T. R. Eisenreich, T. Ried, A. Nussenzweig, and M. C. Nussenzweig. 2009. AID produces DNA double-strand breaks in non-Ig genes and mature B cell lymphomas with reciprocal chromosome translocations. Mol. Cell 36: 631-641. https://doi.org/10.1016/j.molcel.2009.11.007
- Jankovic, M., D. F. Robbiani, Y. Dorsett, T. Eisenreich, Y. Xu, A. Tarakhovsky, A. Nussenzweig, and M. C. Nussenzweig. 2010. Role of the translocation partner in protection against AID-dependent chromosomal translocations. Proc. Natl. Acad. Sci. U.S.A. 107: 187-192. https://doi.org/10.1073/pnas.0908946107
- Komeno, Y., J. Kitaura, N. Watanabe-Okochi, N. Kato, T. Oki, F. Nakahara, Y. Harada, H. Harada, R. Shinkura, H. Nagaoka, Y. Hayashi, T. Honjo, and T. Kitamura. 2010. AID-induced T-lymphoma or Bleukemia/lymphoma in a mouse BMT model. Leukemia 24: 1018-1024. https://doi.org/10.1038/leu.2010.40
- Feldhahn, N., N. Henke, K. Melchior, C. Duy, B. N. Soh, F. Klein, G. von Levetzow, B. Giebel, A. Li, W. K. Hofmann, H. Jumaa, and M. Müschen. 2007. Activation-induced cytidine deaminase acts as a mutator in BCR-ABL1- transformed acute lymphoblastic leukemia cells. J. Exp. Med. 204: 1157-1166. https://doi.org/10.1084/jem.20062662
- Klemm, L., C. Duy, I. Iacobucci, S. Kuchen, G. von Levetzow, N. Feldhahn, N. Henke, Z. Li, T. K. Hoffmann, Y. M. Kim, W. K. Hofmann, H. Jumaa, J. Groffen, N. Heisterkamp, G. Martinelli, M. R. Lieber, R. Casellas, and M. Muschen. 2009. The B cell mutator AID promotes B lymphoid blast crisis and drug resistance in chronic myeloid leukemia. Cancer Cell 16: 232-245. https://doi.org/10.1016/j.ccr.2009.07.030
- Iacobucci, I., A. Lonetti, F. Messa, A. Ferrari, D. Cilloni, S. Soverini, F. Paoloni, F. Arruga, E. Ottaviani, S. Chiaretti, M.Messina, M. Vignetti, C. Papayannidis, A. Vitale, F. Pane, P. P. Piccaluga, S. Paolini, G. Berton, A. Baruzzi, G. Saglio, M. Baccarani, R. Foa, and G. Martinelli. 2010. Different isoforms of the B-cell mutator activation-induced cytidine deaminase are aberrantly expressed in BCR-ABL1-positive acute lymphoblastic leukemia patients. Leukemia 24: 66-73. https://doi.org/10.1038/leu.2009.197
- Gruber, T. A., M. S. Chang, R. Sposto, and M. Müschen. 2010. Activation-induced cytidine deaminase accelerates clonal evolution in BCR-ABL1-driven B-cell lineage acute lymphoblastic leukemia. Cancer Res. 70: 7411-7420. https://doi.org/10.1158/0008-5472.CAN-10-1438
- Palacios, F., P. Moreno, P. Morande, C. Abreu, A. Correa, V. Porro, A. I. Landoni, R. Gabus, M. Giordano, G. Dighiero, O. Pritsch, and P. Oppezzo. 2010. High expression of AID and active class switch recombination might account for a more aggressive disease in unmutated CLL patients: link with an activated microenvironment in CLL disease. Blood 115: 4488-4496. https://doi.org/10.1182/blood-2009-12-257758
- Hancer, V. S., M. Kose, R. Diz-Kucukkaya, A. S. Yavuz, and M. Aktan. 2011. Activation-induced cytidine deaminase mRNA levels in chronic lymphocytic leukemia. Leuk. Lymphoma 52: 79-84.
- Qin, H., K. Suzuki, M. Nakata, S. Chikuma, N. Izumi, T. Huong le, M. Maruya, S. Fagarasan, M. Busslinger, T. Honjo, and H. Nagaoka. 2011. Activation-induced cytidine deaminase expression in CD4+ T cells is associated with a unique IL-10-producing subset that increases with age. PLoS One 6: e29141. https://doi.org/10.1371/journal.pone.0029141
- Ishikawa, C., S. Nakachi, M. Senba, M. Sugai, and N. Mori. 2011. Activation of AID by human T-cell leukemia virus Tax oncoprotein and the possible role of its constitutive expression in ATL genesis. Carcinogenesis 32: 110-119. https://doi.org/10.1093/carcin/bgq222
- Komori, J., H. Marusawa, T. Machimoto, Y. Endo, K. Kinoshita, T. Kou, H. Haga, I. Ikai, S. Uemoto, and T. Chiba. 2008. Activation-induced cytidine deaminase links bile duct inflammation to human cholangiocarcinoma. Hepatology 47: 888-896. https://doi.org/10.1002/hep.22125
- Endo, Y., H. Marusawa, T. Kou, H. Nakase, S. Fujii, T. Fujimori, K. Kinoshita, T. Honjo, and T. Chiba. 2008. Activation-induced cytidine deaminase links between inflammation and the development of colitis-associated colorectal cancers. Gastroenterology 135: 889-898.e1-3. https://doi.org/10.1053/j.gastro.2008.06.091
- Morisawa, T., H. Marusawa, Y. Ueda, A. Iwai, I. M. Okazaki, T. Honjo, and T. Chiba. 2008. Organ-specific profiles of genetic changes in cancers caused by activation-induced cytidine deaminase expression. Int. J. Cancer 123: 2735-2740. https://doi.org/10.1002/ijc.23853
- Endo, Y., H. Marusawa, and T. Chiba. 2011. Involvement of activation-induced cytidine deaminase in the development of colitis-associated colorectal cancers. J. Gastroenterol. 46 Suppl 1: 6-10. https://doi.org/10.1007/s00535-010-0326-1
- Takai, A., H. Marusawa, Y. Minaki, T. Watanabe, H. Nakase, K. Kinoshita, G. Tsujimoto, and T. Chiba. 2012. Targeting activation-induced cytidine deaminase prevents colon cancer development despite persistent colonic inflammation. Oncogene 31: 1733-1742. https://doi.org/10.1038/onc.2011.352
- Morita, S., Y. Matsumoto, Okuyama, K. Ono, Y. Kitamura, A. Tomori, T. Oyama, Y. Amano, Y. Kinoshita, T. Chiba, and H. Marusawa. 2011 Bile acid-induced expression of activation- induced cytidine deaminase during the development of Barrett's oesophageal adenocarcinoma. Carcinogenesis 32: 1706-1712. https://doi.org/10.1093/carcin/bgr194
- Shinmura, K., H. Igarashi, M. Goto, H. Tao, H. Yamada, S. Matsuura, M. Tajima, T. Matsuda, A. Yamane, K. Funai, M. Tanahashi, H. Niwa, H. Ogawa, and H. Sugimura. 2011. Aberrant expression and mutation-inducing activity of AID in human lung cancer. Ann. Surg. Oncol. 18: 2084-2092. https://doi.org/10.1245/s10434-011-1568-8
- Miyazaki, Y., H. Inoue, K. Kikuchi, K. Ochiai, and K. Kusama. 2012. Activation-induced cytidine deaminase mRNA expression in oral squamous cell carcinoma-derived cell lines is upregulated by inflammatory cytokines. J. Oral. Sci. 54:71-75. https://doi.org/10.2334/josnusd.54.71
- Matsumoto. Y., H. Marusawa, K. Kinoshita, Y. Endo, T. Kou, T. Morisawa, T. Azuma, I. M. Okazaki, T. Honjo, and T. Chiba. 2007. Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium. Nat. Med. 13: 470-476. https://doi.org/10.1038/nm1566
- Matsumoto, Y., H. Marusawa, K. Kinoshita, Y. Niwa, Y. Sakai, and T. Chiba. 2010. Up-regulation of activation-induced cytidine deaminase causes genetic aberrations at the CDKN2b-CDKN2a in gastric cancer. Gastroenterology 139:1984-1994. https://doi.org/10.1053/j.gastro.2010.07.010
- Goto, A., M. Hirahashi, M. Osada, K. Nakamura, T. Yao, M. Tsuneyoshi, R. Takayanagi, and Y. Oda. 2011. Aberrant activation-induced cytidine deaminase expression is associated with mucosal intestinalization in the early stage of gastric cancer. Virchows Arch. 458: 717-724. https://doi.org/10.1007/s00428-011-1086-x
Cited by
- Pre-mRNA processing factors meet the DNA damage response vol.4, pp.None, 2012, https://doi.org/10.3389/fgene.2013.00102
- Clustered and genome‐wide transient mutagenesis in human cancers: Hypermutation without permanent mutators or loss of fitness vol.36, pp.4, 2014, https://doi.org/10.1002/bies.201300140
- Changes of T-lymphocyte subpopulation and differential expression pattern of the T-bet and GATA-3 genes in diffuse large B-cell lymphoma patients after chemotherapy vol.14, pp.None, 2012, https://doi.org/10.1186/s12935-014-0085-9
- Overexpression of Activation-Induced Cytidine Deaminase in MTX- and Age-Related Epstein-Barr Virus-Associated B-Cell Lymphoproliferative Disorders of the Head and Neck vol.2015, pp.None, 2012, https://doi.org/10.1155/2015/605750
- AID/APOBEC deaminases and cancer vol.2, pp.4, 2015, https://doi.org/10.18632/oncoscience.155
- Risks at the DNA Replication Fork: Effects upon Carcinogenesis and Tumor Heterogeneity vol.8, pp.1, 2012, https://doi.org/10.3390/genes8010046
- Malaria, Epstein–Barr virus infection and the pathogenesis of Burkitt's lymphoma vol.141, pp.9, 2017, https://doi.org/10.1002/ijc.30885
- Expression of activation-induced cytidine deaminase splicing variants in patients with ankylosing spondylitis vol.50, pp.8, 2012, https://doi.org/10.1080/08916934.2017.1385777
- Aberrant expression of interleukin-10 and activation-induced cytidine deaminase in B cells from patients with Behçet's disease vol.7, pp.6, 2012, https://doi.org/10.3892/br.2017.996
- NF-κB, inflammation, immunity and cancer: coming of age vol.18, pp.5, 2018, https://doi.org/10.1038/nri.2017.142
- Updated advances of linking psychosocial factors and sex hormones with systemic lupus erythematosus susceptibility and development vol.7, pp.None, 2019, https://doi.org/10.7717/peerj.7179
- Oxaliplatin Treatment Alters Systemic Immune Responses vol.2019, pp.None, 2012, https://doi.org/10.1155/2019/4650695
- Crosstalk between cancer and immune cells: Role of tumor‐associated macrophages in the tumor microenvironment vol.8, pp.10, 2012, https://doi.org/10.1002/cam4.2327
- Extracellular vesicles: Regenerative medicine prospect in hematological malignancies vol.45, pp.10, 2012, https://doi.org/10.1002/cbin.11660
- HomA and HomB, outer membrane proteins of Helicobacter pylori down-regulate activation-induced cytidine deaminase (AID) and Ig switch germline transcription and thereby affect class switch recombinati vol.142, pp.None, 2012, https://doi.org/10.1016/j.molimm.2021.12.014