Acknowledgement
Supported by : 남서울대학교
References
- 김영상, 주노아, 이종재, 군집신경망과 확률신경망 이론을 이용한 연약지반의 측방유동 평가 모델, 한국지반공학회논문집, 23권, 7호, pp. 65-76, 2007
- 이종원, 분포형 광섬유센서와 변형률 모드를 이용한 구조물의 손상탐지기법, 대한건축학회논문집, 27권 2호, pp. 47-54, 2011
- Abdel-Aal, R. E., Improving Electric Load Forecasts Using Network Committees, Electric Power System Research, Vol. 74, pp. 83-94, 2005 https://doi.org/10.1016/j.epsr.2004.09.007
- Fernandes, A. M., Utkin, A. B., Lavrov, A. V., and Vilar, R. M., Development of Neural Network Committee Machine for Automatic Forest Fire Detection Using Lidar, Pattern Recognition, Vol. 37, pp. 2039-2047, 2004 https://doi.org/10.1016/j.patcog.2004.04.002
- Hashem, S., Optimal linear combinations of neural networks, PhD Thesis, Purdue University, IN, USA, 1994
- Hinsbergen, C. P. IJ., van Lint, J. W. C., and van Zuylen, H. J., Bayesian Committee of Neural Networks to Predict Travel Time with Confidence Intervals, Transportation Research Part C, Vol. 17, pp. 498-509, 2009 https://doi.org/10.1016/j.trc.2009.04.007
- Lee J. W., Yi, J. H., Kim, J. D., and Yun, C. H., Health Monitoring Method Using Committee of Neural Networks, Key Engineering Materials, Vols. 270-273, pp. 1983-1988, 2004 https://doi.org/10.4028/www.scientific.net/KEM.270-273.1983
- Lee, J. W., Choi, K. H, and Huh, Y. C., Damage Detection Method for Large Structures Using Static and Dynamic Strain Data from Distributed Fiber Optic Sensor, International Journal of Steel Structures, Vol. 10, No. 1, pp. 91-97, 2010 https://doi.org/10.1007/BF03249515
- Liu, J., Zuo, B., Zeng, X., Vroman, P., and Rabenasolo, B., Wavelet Energy Signature and Robust Bayesian Neural Network for Visual Quality Recognition of Nonwovens, Expert Systems with Application, Vol. 38, pp. 8497-8508, 2011 https://doi.org/10.1016/j.eswa.2011.01.049
- Marwala, T., Probabilistic Fault Identification Using a Committee of Neural Networks and Vibration Dara, Journal of Aircraft, Vol. 38, No. 1, pp. 138-146, 2001 https://doi.org/10.2514/2.2745
- Marwala, T. and Heyns, P. S., Multiple-criterion Method for Determining Structural Damage", American Institute of Aeronautics and Astronautics Journal, Vol. 36, pp.1494-1501, 1998 https://doi.org/10.2514/2.543
- Marwala, T. and Hunt, H. E. M., Fault Identification Using Finite Element Models and Neural Networks", Mechanical Systems and Signal Processing, Vol.13, No.3, pp.475-490, 1999 https://doi.org/10.1006/mssp.1998.1218
- Parmanto, B., Munro, P. W., Doyle, H. R., Doria, C., Aldrighetti, L., Marino, I. R., Mitchel, S., and Fung, J. J., Neural Network Classifier for Hepatoma Detection", Proceeding of the World Congress of Neural Networks, San Diego, USA, 1994
- Perrone, M. P., General Averaging Results for Convex Optimization, Proceedings of Connectionist Models Summer School, Hillsdale, pp. 364-371, 1993
- Perrone, M. P. and Cooper, L. N., When Networks Disagree: Ensemble Methods for Hybrid Neural Networks, Artificial Neural Networks for Speech and Vision, Chapman & Hall, London, pp. 126-142, 1993
- Vapnik, V. N. and Chervonenkis, A. Y., On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities, Theory of Probability and its Applications, Vol. 16, pp. 264-280, 1971 https://doi.org/10.1137/1116025
- Yang, X. F., Swamidas, A. S. J., and Seshadri, R., Crack Identification in Vibrating Beams Using the Energy Method, Journal of Sound and Vibration, Vol. 244, p.p. 339-357, 2001 https://doi.org/10.1006/jsvi.2000.3498
- Zhao, Z. Q., Huang, D. S., and Sun, B. Y., Human Face Recognition based on Multi-features Using Neural Networks Committee, Pattern Recognition Letters, Vol. 25, pp. 1351-1358, 2004 https://doi.org/10.1016/j.patrec.2004.05.008