DOI QR코드

DOI QR Code

Antimicrobial and Synergistic Effects of Silver Nanoparticles Synthesized Using Soil Fungi of High Altitudes of Eastern Himalaya

  • Devi, Lamabam Sophiya (Microbiology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University) ;
  • Joshi, S.R. (Microbiology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University)
  • Received : 2011.10.27
  • Accepted : 2011.12.16
  • Published : 2012.03.31

Abstract

Fifty three fungi isolated from soils of different microhabitats of eastern Himalayan range (3,400-3,600 msl) were screened for mycosynthesis of silver nanaoparticles (AgNPs) and their efficacy as antimicrobials were assessed in combination with commonly used antibiotics. Three isolates $Aspergillus$ $terreus$ SP5, $Paecilomyces$ $lilacinus$ SF1 and $Fusarium$ sp. MP5 identified based on morphological and 18S rRNA gene sequences were found to synthesize AgNPs. These nanoparticles were characterized by visual observation followed by UV-visible spectrophotometric analysis. The AgNPs synthesized by $Aspergillus$ $terreus$ SP5, $Paecilomyces$ $lilacinus$ SF1 and $Fusarium$ sp. MP5 showed absorbance maxima at 412, 419, and 421 nm respectively in the visible region. Transmission electron microscopy micrograph showed formation of spherical AgNPs of 5-50 nm size. The antimicrobial activity of the mycosynthesized nanoparticles were investigated alone and in combination with commonly used antibiotics for analysis of growth inhibition zone against test organisms, namely, $Staphylococcus$ $aureus$ MTCC96, $Streptococcus$ $pyogenes$ MTCC1925, $Salmonella$ $enterica$ MTCC735 and $Enterococcus$ $faecalis$ MTCC2729. The mycosynthesized nanoparticles showed potent antibacterial activity and interestingly their syngergistic effect with erythromycin, methicillin, chloramphenicol and ciprofloxacin was significantly higher as compared to inhibitions by AgNPs alone. The present study indicates that silver nanoparticles synthesized using soil borne indigenous fungus of high altitudes show considerable antimicrobial activity, deserving further investigation for potential applications.

Keywords

References

  1. Fortin D, Beveridge TJ. Mechanistic routes towards biomineral surface development. In: Bauerlein E, editor. Biomineralisation: from biology to biotechnology and medical application. Verlag: Wiley-VCH; 2000. p. 7-24.
  2. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajayakumar PV, Alam M, Kumar R, et al. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 2001;1:515-9. https://doi.org/10.1021/nl0155274
  3. Myers N, Mittermeier RA, Mittermeier CG, de Fonseca GA, Kent J. Biodiversity hotspots for conservation priorities. Nature 2000;403:853-8. https://doi.org/10.1038/35002501
  4. Gade AK, Ingle A, Whiteley C, Rai M. Mycogenic metal nanoparticles: progress and applications. Biotechnol Lett 2010;32:593-600. https://doi.org/10.1007/s10529-009-0197-9
  5. Sastry M, Ahmad A, Khan MI, Kumar R. Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 2003;85:162-70.
  6. Riddin TL, Gericke M, Whiteley CG. Analysis of the interand extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 2006;17:3482-9. https://doi.org/10.1088/0957-4484/17/14/021
  7. Chen JC, Lin ZH, Ma XX. Evidence of the production of silver nanoparticles via pretreatment of Phoma sp. 3.2883 with silver nitrate. Lett Appl Microbiol 2003;37:105-8. https://doi.org/10.1046/j.1472-765X.2003.01348.x
  8. Birla S, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 2009;48:173-9. https://doi.org/10.1111/j.1472-765X.2008.02510.x
  9. Bhainsa KC, D'Souza SF. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces 2006;47:160-4. https://doi.org/10.1016/j.colsurfb.2005.11.026
  10. Gade AK, Bonde P, Ingle AP, Marcato PD, Duran N, Rai MK. Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy 2008;2:243-7. https://doi.org/10.1166/jbmb.2008.401
  11. Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 2007;61:1413-8. https://doi.org/10.1016/j.matlet.2006.07.042
  12. Aymonier C, Schlotterbeck U, Antonietti L, Zacharias P, Thomann R, Tiller JC, Mecking S. Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem Commun (Camb) 2002;24:3018-9.
  13. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 2004;275:177-82. https://doi.org/10.1016/j.jcis.2004.02.012
  14. Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI. Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol 2005;5:244-9. https://doi.org/10.1166/jnn.2005.034
  15. Melaiye A, Sun Z, Hindi K, Milsted A, Ely D, Reneker DH, Tessier CA, Youngs WJ. Silver(I)-imidazole cyclophane gemdiol complexes encapsulated by electrospun tecophilic nanofibers: formation of nanosilver particles and antimicrobial activity. J Am Chem Soc 2005;127:2285-91. https://doi.org/10.1021/ja040226s
  16. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 2006;5:916-24. https://doi.org/10.1021/pr0504079
  17. Lee HJ, Yeo SY, Jeong SH. Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J Mater Sci 2003;38:2199-204. https://doi.org/10.1023/A:1023736416361
  18. Kim S, Kim HJ. Anti-bacterial performance of colloidal silver-treated laminate wood flooring. Int Biodeterior Biodegrad 2006;57:155-62. https://doi.org/10.1016/j.ibiod.2006.02.002
  19. Thomas V, Yallapu MM, Sreedhar B, Bajpai SK. A versatile strategy to fabricate hydrogel-silver nanocomposites and investigation of their antimicrobial activity. J Colloid Interface Sci 2007;315:389-95. https://doi.org/10.1016/j.jcis.2007.06.068
  20. Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M. Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 2008;4:141-4. https://doi.org/10.2174/157341308784340804
  21. Borneman J, Hartin RJ. PCR primers that amplify fungal rRNA genes from environmental samples. Appl Environ Microbiol 2000;66:4356-60. https://doi.org/10.1128/AEM.66.10.4356-4360.2000
  22. Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir 1996;12:788-800. https://doi.org/10.1021/la9502711
  23. Kathiresan K, Manivannan S, Nabeel MA, Dhivya B. Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B Biointerfaces 2009;71:133-7. https://doi.org/10.1016/j.colsurfb.2009.01.016
  24. Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J. Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 2011;3:635-41. https://doi.org/10.1039/c0nr00656d
  25. Maliszewska I, Puzio M. Extracellular biosynthesis and antimicrobial activity of silver nanoparticles. Acta Phys Pol A 2009;116(Suppl):S160-2.
  26. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 2000;52:662-8. https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
  27. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ. The bactericidal effect of silver nanoparticles. Nanotechnology 2005;16:2346-53. https://doi.org/10.1088/0957-4484/16/10/059
  28. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine 2007;3:95-101. https://doi.org/10.1016/j.nano.2006.12.001
  29. Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 2007;3:168-71. https://doi.org/10.1016/j.nano.2007.02.001
  30. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against grampositive and gram-negative bacteria. Nanomedicine 2010; 6:103-9. https://doi.org/10.1016/j.nano.2009.04.006