DOI QR코드

DOI QR Code

CysQ of $Cryptosporidium$ $parvum$, a Protozoa, May Have Been Acquired from Bacteria by Horizontal Gene Transfer

  • Lee, Ji-Young (Department of Bioinformatics & Life Sciences, Soongsil University) ;
  • Kim, Sang-Soo (Department of Bioinformatics & Life Sciences, Soongsil University)
  • Received : 2012.01.29
  • Accepted : 2012.02.15
  • Published : 2012.03.31

Abstract

Horizontal gene transfer (HGT) is the movement of genetic material between kingdoms and is considered to play a positive role in adaptation. $Cryptosporidium$ $parvum$ is a parasitic protozoan that causes an infectious disease. Its genome sequencing reported 14 bacteria-like proteins in the nuclear genome. Among them, cgd2_1810, which has been annotated as CysQ, a sulfite synthesis pathway protein, is listed as one of the candidates of genes horizontally transferred from bacterial origin. In this report, we examined this issue using phylogenetic analysis. Our BLAST search showed that $C.$ $parvum$ CysQ protein had the highest similarity with that of proteobacteria. Analysis with NCBI's Conserved Domain Tree showed phylogenetic incongruence, in that $C.$ $parvum$ CysQ protein was located within a branch of proteobacteria in the cd01638 domain, a bacterial member of the inositol monophosphatase family. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, the sulfate assimilation pathway, where CysQ plays an important role, is well conserved in most eukaryotes as well as prokaryotes. However, the Apicomplexa, including $C.$ $parvum$, largely lack orthologous genes of the pathway, suggesting its loss in those protozoan lineages. Therefore, we conclude that $C.$ $parvum$ regained cysQ from proteobacteria by HGT, although its functional role is elusive.

Keywords

References

  1. Syvanen M, Kado CI. Horizontal Gene Transfer . London: Academic Press, 2002.
  2. Freeman VJ. Studies on the virulence of bacteriophage- infected strains of Corynebacterium diphtheriae . J Bacteriol 1951;61:675-688.
  3. Watanabe T. Infective heredity of multiple drug resistance in bacteria. Bacteriol Rev 1963;27:87-115.
  4. Kelly BG, Vespermann A, Bolton DJ. Gene transfer events and their occurrence in selected environments. Food Chem Toxicol 2009;47:978-983. https://doi.org/10.1016/j.fct.2008.06.012
  5. Keeling PJ, Palmer JD. Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 2008;9:605-618. https://doi.org/10.1038/nrg2386
  6. Keeling PJ. Functional and ecological impacts of horizontal gene transfer in eukaryotes. Curr Opin Genet Dev 2009;19:613-619. https://doi.org/10.1016/j.gde.2009.10.001
  7. Woolfit M, Iturbe-Ormaetxe I, McGraw EA, O'Neill SL. An ancient horizontal gene transfer between mosquito and the endosymbiotic bacterium Wolbachia pipientis . Mol Biol Evol 2009;26:367-374. https://doi.org/10.1093/molbev/msn253
  8. Mallet LV, Becq J, Deschavanne P. Whole genome evaluation of horizontal transfers in the pathogenic fungus Aspergillus fumigatus. BMC Genomics 2010;11:171. https://doi.org/10.1186/1471-2164-11-171
  9. Vogan AA, Higgs PG. The advantages and disadvantages of horizontal gene transfer and the emergence of the first species. Biol Direct 2011;6:1. https://doi.org/10.1186/1745-6150-6-1
  10. DuPont HL, Chappell CL, Sterling CR, Okhuysen PC, Rose JB, Jakubowski W. The infectivity of Cryptosporidium parvum in healthy volunteers. N Engl J Med 1995;332:855-859. https://doi.org/10.1056/NEJM199503303321304
  11. Park JH, Kim HJ, Guk SM, Shin EH, Kim JL, Rim HJ, et al. A survey of cryptosporidiosis among 2,541 residents of 25 coastal islands in Jeollanam-Do (Province), Republic of Korea. Korean J Parasitol 2006;44:367-372. https://doi.org/10.3347/kjp.2006.44.4.367
  12. Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, et al. Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 2004;304:441-445. https://doi.org/10.1126/science.1094786
  13. Huang J, Mullapudi N, Lancto CA, Scott M, Abrahamsen MS, Kissinger JC. Phylogenomic evidence supports past endosymbiosis, intracellular and horizontal gene transfer in Cryptosporidium parvum. Genome Biol 2004;5:R88. https://doi.org/10.1186/gb-2004-5-11-r88
  14. Striepen B, Pruijssers AJ, Huang J, Li C, Gubbels MJ, Umejiego NN, et al. Gene transfer in the evolution of parasite nucleotide biosynthesis. Proc Natl Acad Sci U S A 2004;101:3154-3159. https://doi.org/10.1073/pnas.0304686101
  15. Chaudhary K, Roos DS. Protozoan genomics for drug discovery. Nat Biotechnol 2005;23:1089-1091. https://doi.org/10.1038/nbt0905-1089
  16. Umejiego NN, Gollapalli D, Sharling L, Volftsun A, Lu J, Benjamin NN, et al. Targeting a prokaryotic protein in a eukaryotic pathogen: identification of lead compounds against cryptosporidiosis. Chem Biol 2008;15:70-77. https://doi.org/10.1016/j.chembiol.2007.12.010
  17. Neuwald AF, Krishnan BR, Brikun I, Kulakauskas S, Suziedelis K, Tomcsanyi T, et al. cysQ, a gene needed for cysteine synthesis in Escherichia coli K-12 only during aerobic growth. J Bacteriol 1992;174:415-425. https://doi.org/10.1128/jb.174.2.415-425.1992
  18. Hatzios SK, Iavarone AT, Bertozzi CR. Rv2131c from Mycobacterium tuberculosis is a CysQ 3'-phosphoadenosine-5'-phosphatase. Biochemistry 2008;47:5823-5831. https://doi.org/10.1021/bi702453s
  19. Hatzios SK, Schelle MW, Newton GL, Sogi KM, Holsclaw CM, Fahey RC, et al. The Mycobacterium tuberculosis CysQ phosphatase modulates the biosynthesis of sulfated glycolipids and bacterial growth. Bioorg Med Chem Lett 2011;21:4956-4959. https://doi.org/10.1016/j.bmcl.2011.06.057
  20. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403-410.
  21. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389-3402. https://doi.org/10.1093/nar/25.17.3389
  22. Marchler-Bauer A, Bryant SH. CD-Search: protein domain annotations on the fly. Nucleic Acids Res 2004; 32:W327-W331. https://doi.org/10.1093/nar/gkh454
  23. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, et al. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 2011;39:D225-D229. https://doi.org/10.1093/nar/gkq1189
  24. Huerta-Cepas J, Capella-Gutierrez S, Pryszcz LP, Denisov I, Kormes D, Marcet-Houben M, et al. PhylomeDB v3.0: an expanding repository of genome-wide collections of trees, alignments and phylogeny-based orthology and paralogy predictions. Nucleic Acids Res 2011;39:D556-D560. https://doi.org/10.1093/nar/gkq1109
  25. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res 2004;32:D277-D280. https://doi.org/10.1093/nar/gkh063
  26. Chen F, Mackey AJ, Stoeckert CJ Jr, Roos DS. OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res 2006; 34:D363-D368. https://doi.org/10.1093/nar/gkj123
  27. Koski LB, Golding GB. The closest BLAST hit is often not the nearest neighbor. J Mol Evol 2001;52:540-542. https://doi.org/10.1007/s002390010184
  28. Hatzios SK, Bertozzi CR. The regulation of sulfur metabolism in Mycobacterium tuberculosis. PLoS Pathog 2011;7:e1002036. https://doi.org/10.1371/journal.ppat.1002036
  29. Sassetti CM, Boyd DH, Rubin EJ. Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 2003;48:77-84. https://doi.org/10.1046/j.1365-2958.2003.03425.x
  30. Zhang R, Lin Y. DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes. Nucleic Acids Res 2009;37(Suppl 1):D455-D458. https://doi.org/10.1093/nar/gkn858
  31. Nozaki T, Ali V, Tokoro M. Sulfur-containing amino acid metabolism in parasitic protozoa. Adv Parasitol 2005;60:1-99.