DOI QR코드

DOI QR Code

Tip-Enhanced Raman Scattering with a Nanoparticle-Functionalized Probe

  • Received : 2012.01.20
  • Accepted : 2012.02.27
  • Published : 2012.05.20

Abstract

We carried out the tip-enhanced Raman scattering (TERS) with a tip that is functionalized with a Aunanoparticle (AuNP, with a diameter of 250 nm). The AuNP tip is fabricated by a direct mechanical pickup of a AuNP from a flat substrate, and the TERS signal from the AuNP tip - organic monolayer - Au thin film (thickness of 10 nm) is recorded. We find that such a AuNP-tip interacting with a thin film routinely yields signal enhancement larger than ${\sim}10^4$, which is sufficient not only for local (with detection area of ~200 $nm^2$) Raman spectroscopy, but also the nanometric imaging of organic monolayers within a reasonable acquisition time (~20 minutes/image).

Keywords

References

  1. Pettinger, B.; Ren, B.; Picardi, G.; Schuster, R.; Ertl, G. Phys. Rev. Lett. 2004, 92, 096101. https://doi.org/10.1103/PhysRevLett.92.096101
  2. Deckert, V. J. of Raman Spectrosc. 2009, 40, 1336. https://doi.org/10.1002/jrs.2452
  3. Hayazawa, N.; Motohashi, M.; Saito, Y.; Ishitobi, H.; Ono, A.; Ichimura, T.; Verma, P.; Kawata, S. J. of Raman Spectrosc. 2007, 38(6), 684-696. https://doi.org/10.1002/jrs.1728
  4. Hartschuh, A.; Sanchez, E. J.; Xie, X. S.; Novotny, L. Phys. Rev. Lett. 2003, 90, 095503. https://doi.org/10.1103/PhysRevLett.90.095503
  5. Verma, P.; Yamada, K.; Watanabe, H.; Inouye, Y.; Kawata, S. Phys. Rev. B 2006, 73, 045416. https://doi.org/10.1103/PhysRevB.73.045416
  6. Stockle, R. M.; Suh, Y. D.; Deckert, V.; Zenobi, R. Chem. Phys. Lett. 2000, 318, 131. https://doi.org/10.1016/S0009-2614(99)01451-7
  7. Weber-Bargioni, A.; Schwartzberg, A.; Cornaglia, M.; Ismach, A.; Urban, J. J.; Pang, Y. J.; Gordon, R.; Bokor, J.; Salmeron, M. B.; Ogletree, D. F.; Ashby, P.; Cabrini, S.; Schuck, P. J. Nano Lett. 2011, 11, 1201. https://doi.org/10.1021/nl104163m
  8. Yang, Z.; Aizpurua, J.; Xu, H. J. Raman Spectrosc. 2009, 40, 1343. https://doi.org/10.1002/jrs.2429
  9. Weber-Bargioni, A.; Schmidt, M.; Harteneck, B.; Ogletree, D. F.; Schuck, P. J.; Cabrini, S. Nanotechnology 2010, 21, 065306. https://doi.org/10.1088/0957-4484/21/6/065306
  10. Park, W.-H.; Kim, Z. H. Nano Lett. 2010, 10, 4040. https://doi.org/10.1021/nl102026p
  11. Le, F.; Lwin, N. Z.; Steele, J. M.; Käll, M.; Halas, N. J.; Nordlander, P. Nano Lett. 2005, 5, 2009. https://doi.org/10.1021/nl0515100
  12. Halas, N. J.; Lal, S.; Chang, W.-S.; Link, S.; Nordlander, P. Chem. Rev. 2011, 111, 3913. https://doi.org/10.1021/cr200061k
  13. Jang, S. Y.; Reddy, P.; Majumdar, A.; Segalman, R. A. Nano Lett. 2006, 6, 2362. https://doi.org/10.1021/nl0609495
  14. Rycenga, M.; Camargo, P. H. C.; Li, W.; Moran, C. H.; Xia, Y. J. Phys. Chem. Lett. 2010, 1, 696. https://doi.org/10.1021/jz900286a

Cited by

  1. Facile Fabrication of Spherical Nanoparticle-Tipped AFM Probes for Plasmonic Applications vol.32, pp.2, 2014, https://doi.org/10.1002/ppsc.201400104
  2. Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics vol.45, pp.20, 2016, https://doi.org/10.1039/C6CS00450D
  3. Nanoscale Raman Imaging with Nanogold-Topped AFM Probes Fabricated by Area-Selective Electroless Deposition vol.165, pp.14, 2018, https://doi.org/10.1149/2.0561814jes
  4. Observation of propagating surface plasmon polaritons by using functionalized tip‐enhanced Raman spectroscopy vol.51, pp.8, 2012, https://doi.org/10.1002/jrs.5855