DOI QR코드

DOI QR Code

Voltammetric Studies of Anion Transfer Reactions Across a Microhole Array-Water/PVC-NPOE Gel Interface

  • Hossain, Md. Mokarrom (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University) ;
  • Girault, Hubert H. (Laboratoire d'Electrochimie Physique et Analytique) ;
  • Lee, Hye-Jin (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University)
  • Received : 2011.12.18
  • Accepted : 2012.02.27
  • Published : 2012.05.20

Abstract

Voltammetric characterization of hydrophilic anion transfer processes across a 66 microhole array interface between the water and polyvinylchloride-2-nitrophenyloctylether gel layer is demonstrated. Since the transfer of hydrophilic anions including $Br^-$, $NO_3{^-}$, $I^-$, $SCN^-$ and $ClO_4{^-}$ across the liquid/gel interface usually sets the potential window within a negative potential region, a highly hydrophobic organic electrolyte, tetraoctylammonium tetrakis(pentafluorophenyl)borate, providing a wider potential window was incorporated into the gel phase. The transfer reaction of perchlorate anions across the microhole-water/gel interface was first studied using cyclic voltammetry and differential pulse voltammetry. The full voltammetric response of perchlorate anion transfer was then used as a reference for evaluating the half-wave transfer potentials, the formal transfer potentials and the formal Gibbs transfer energies of more hydrophilic anions such as $Br^-$, $NO_3{^-}$, $I^-$, and $SCN^-$. The current response associated with the perchlorate anion transfer across the micro-water/gel interface versus the perchlorate concentration was also demonstrated for sensing applications.

Keywords

References

  1. Volkov, A. G. Liquid-Liquid Interfaces in Chemical, Biological and Pharmaceutical Applications; Marcel Dekker: New York, 2001; Vol. 95.
  2. Lee, H. J.; Pereira, C. M.; Silva, A. F.; Girault, H. H. Anal. Chem. 2000, 72, 5562. https://doi.org/10.1021/ac0006831
  3. Samec, Z.; Samcova, E.; Girault, H. H. Talanta 2004, 63, 21. https://doi.org/10.1016/j.talanta.2003.11.023
  4. Reymond, F.; Fermín, D.; Lee, H. J.; Girault, H. H. Electrochim. Acta 2000, 45, 2647. https://doi.org/10.1016/S0013-4686(00)00343-1
  5. Ishimatsu, R.; Kim, J.; Jing, P.; Striemer, C. C.; Fang, D. Z.; Faucher, P. M.; McGrath, J. L.; Amemiya, S. Anal. Chem. 2010, 82, 7127. https://doi.org/10.1021/ac1005052
  6. Jing, P.; He, S.; Liang, Z.; Shao, Y. Anal Bioanal Chem. 2006, 385, 428. https://doi.org/10.1007/s00216-006-0399-0
  7. Samec, Z. Pure Appl. Chem. 2004, 76, 2147. https://doi.org/10.1351/pac200476122147
  8. Scholz, F. Annu. Rep. Prog. Chem., Sect. C 2006, 102, 43. https://doi.org/10.1039/b417141c
  9. Samec, Z.; Langmaier, J.; Trojanek, A.; Samcova, E.; Malek, J. Anal. Sci. 1998, 14, 35. https://doi.org/10.2116/analsci.14.35
  10. Lee, H. J.; Beriet, C.; Girault, H. H. J. Electroanal. Chem. 1998, 453, 211.
  11. Zazpe, R.; Hibert, C.; O'Brien, J.; Lanyon, Y. H.; Arrigan, D. W. M. Lab. Chip. 2007, 7, 1732. https://doi.org/10.1039/b712601h
  12. Beattie, P. D.; Delay, A.; Girault, H. H. Electrochim. Acta 1995, 40, 2961. https://doi.org/10.1016/0013-4686(95)00229-8
  13. Silva, F.; Sousa, M. J.; Pereira, C. M. Electrochim. Acta 1997, 42, 3095. https://doi.org/10.1016/S0013-4686(97)90000-1
  14. Lee, H. J.; Beattie, P. D.; Seddon, B. J.; Osborne, M. D.; Girault, H. H. J. Electroanal. Chem. 1997, 440, 73.
  15. Lee, H. J.; Lagger, G.; Pereira, C. M.; Silva, A. F.; Girault, H. H. Talanta 2009, 78, 66. https://doi.org/10.1016/j.talanta.2008.10.059
  16. Faisal, S. N.; Pereira, C. M.; Rho, S.; Lee, H. J. Phys. Chem. Chem. Phys. 2010, 12, 15184. https://doi.org/10.1039/c0cp00750a
  17. Hossain, M. M.; Faisal, S. N.; Kim, C. S.; Cha, H. J.; Nam, S. C.; Lee, H. J. Electrochem. Commun. 2011, 13, 611. https://doi.org/10.1016/j.elecom.2011.03.024
  18. Hossain, M. M.; Kim, C. S.; Cha, H. J.; Lee, H. J. Electroanalysis 2011, 23, 2049. https://doi.org/10.1002/elan.201100190
  19. O'Mahony, A. M.; Scanlon, M. D.; Berduque, A.; Beni, V.; Arrigan, D. W. M.; Faggi, E.; Bencini, A. Electrochem. Commun. 2005, 7, 976. https://doi.org/10.1016/j.elecom.2005.06.011
  20. Quinn, B.; Lahtinen, R.; Murtomäki, L. J. Electroanal. Chem. 1999, 460, 149. https://doi.org/10.1016/S0022-0728(98)00369-6
  21. Olaya, A. J.; Méndez, M. A.; Cortes-Salazar, F.; Girault, H. H. J. Electroanal. Chem. 2010, 644, 60. https://doi.org/10.1016/j.jelechem.2010.03.030
  22. Peulon, S.; Guillou, V.; L'Her, M. J. Electroanal. Chem. 2001, 514, 94. https://doi.org/10.1016/S0022-0728(01)00617-9
  23. Rezaei, B.; Meghdadi, S.; Bagherpour, S. J. Hazard. Mater. 2009, 161, 641. https://doi.org/10.1016/j.jhazmat.2008.04.005
  24. Gertsch, J. C.; Noblitt, S. D.; Cropek, D. M.; Henry, C. S. Anal. Chem. 2010, 82, 3426. https://doi.org/10.1021/ac9029086
  25. Leontidis, E. Curr. Opin. Colloid Interface Sci. 2002, 7, 81. https://doi.org/10.1016/S1359-0294(02)00010-9
  26. Macca, C.; Wang, J. Anal. Chim. Acta 1995, 303, 265. https://doi.org/10.1016/0003-2670(94)00511-J

Cited by

  1. Tetraoctylphosphonium Tetrakis(pentafluorophenyl)borate Room Temperature Ionic Liquid toward Enhanced Physicochemical Properties for Electrochemistry vol.116, pp.42, 2012, https://doi.org/10.1021/jp3081832
  2. Portable Amperometric Perchlorate Selective Sensors with Microhole Array-water/organic Gel Interfaces vol.34, pp.9, 2013, https://doi.org/10.5012/bkcs.2013.34.9.2577
  3. Recent developments in electrochemistry at the interface between two immiscible electrolyte solutions for ion sensing vol.140, pp.12, 2015, https://doi.org/10.1039/C5AN00601E
  4. Voltammetric Studies of Topotecan Transfer Across Liquid/Liquid Interfaces and Sensing Applications vol.87, pp.10, 2015, https://doi.org/10.1021/acs.analchem.5b00653
  5. An Electrochemical Sensing Platform Based on Liquid–Liquid Microinterface Arrays Formed in Laser-Ablated Glass Membranes vol.88, pp.5, 2016, https://doi.org/10.1021/acs.analchem.5b03091
  6. Voltammetric determination of perchlorate ion at a liquid–liquid microscopic interface vol.72, pp.9, 2017, https://doi.org/10.1134/S1061934817090052
  7. Biphasic Voltammetry and Spectroelectrochemistry in Polymer of Intrinsic Microporosity—4-(3-Phenylpropyl)-Pyridine Organogel/Aqueous Electrolyte Systems: Reactivity of MnPc Versus MnTPP pp.1868-5994, 2018, https://doi.org/10.1007/s12678-018-0497-8
  8. Electroanalysis of Caffeic Acid in Red Wine and Investigation of Thermodynamic Parameters Using an Ag Nanoparticles Modified Poly(Thiophene) Film Glassy Carbon Electrode vol.25, pp.8, 2012, https://doi.org/10.1002/elan.201300091
  9. Electrochemical assessment of water|ionic liquid biphasic systems towards cesium extraction from nuclear waste vol.821, pp.None, 2012, https://doi.org/10.1016/j.aca.2014.03.012
  10. 액체/액체 계면에서 테트라사이클린 전이반응의 전기화학적 분석 및 응용 vol.28, pp.5, 2012, https://doi.org/10.14478/ace.2017.1052
  11. Ion Transfer Voltammetry with an Electrochemical Pen vol.92, pp.24, 2012, https://doi.org/10.1021/acs.analchem.0c03530
  12. Detection of Acetylcholine at Nanoscale NPOE/Water Liquid/Liquid Interface Electrodes vol.93, pp.49, 2012, https://doi.org/10.1021/acs.analchem.1c03711