DOI QR코드

DOI QR Code

Study of Thiazoline Derivatives for the Design of Optimal Fungicidal Compounds Using Multiple Linear Regression (MLR)

  • Han, Won-Seok (Molecular Recognition Research Center, Korea Institute of Science and Technology) ;
  • Lee, Jin-Kak (Molecular Recognition Research Center, Korea Institute of Science and Technology) ;
  • Lee, Jun-Seok (Molecular Recognition Research Center, Korea Institute of Science and Technology) ;
  • Hahn, Hoh-Gyu (Chemical Kinomics Research Center, Korea Institute of Science and Technology) ;
  • Yoon, Chang-No (Molecular Recognition Research Center, Korea Institute of Science and Technology)
  • Received : 2012.02.08
  • Accepted : 2012.02.23
  • Published : 2012.05.20

Abstract

Rice blast is the most serious disease of rice due to its harmfulness and its world wide distribution. $Magnaporthe$ $grisea$ is the cause of rice blast disease and destroys rice enough to feed several tens of millions of people each year. Fungicides are commonly used to control rice blast. But $M.$ $grisea$ acquires resistance to chemical treatments by genetic mutations. 2-Phenylimino-1,3-thiazolines were proposed as a novel class of fungicides against $M.$ $grisea$ in the previous study. To develop compounds with a higher biological activity, a new series of 2-phenylimino-1,3-thiazolines was synthesized and its fungicidal activity was determined against $M.$ $grisea$. The QSAR analysis was carried out on a series of 2-phenylimino-1,3-thiazolines. The QSAR results showed the dependence of fungicidal activity on the structural and physicochemical features of 2-phenylimino-1,3-thiazolines. Our results could be used as guidelines for the study of the mode of action and further design of optimal fungicides.

Keywords

References

  1. Kato, H. Pestic Outlook 2001, 12, 23. https://doi.org/10.1039/b100803j
  2. Skamnioti, P.; Gurr, S. J. Trends in Biotechnol. 2009, 27, 141. https://doi.org/10.1016/j.tibtech.2008.12.002
  3. Hahn, H. G.; Nam, K. D.; Choi, G. J.; Cho, K. Y. J. Korean Soc. Agri. Chem. Biotechnol. 1997, 40, 139.
  4. Hahn, H. G.; Nam, K. D.; Choi, G. J.; Cho, K. Y. J. Korean Soc. Agri. Chem. Biotechnol. 1998, 41, 471.
  5. Song, J. S.; Moon, T.; Nam, K. D.; Lee, J. K.; Hahn, H. G.; Choi, E. J.; Yoon, C. N. Bioorg. Med. Chem. Lett. 2008, 18, 2133. https://doi.org/10.1016/j.bmcl.2008.01.085
  6. Nakagawa, Y.; Izumi, K.; Oikawa, N.; Kurozumi, A.; Iwamura, H.; Fujita, T. Pestic. Biochem. Physiol. 1991, 40, 12. https://doi.org/10.1016/0048-3575(91)90045-N
  7. Nakagawa, Y.; Smagghe, G.; Kugimiya, S.; Hattori, K.; Ueno, T.; Tirry, L.; Fujita, T. Pestic. Sci. 1999, 55, 909. https://doi.org/10.1002/(SICI)1096-9063(199909)55:9<909::AID-PS34>3.0.CO;2-G
  8. Bae, S.; Hahn, H. G.; Nam, K. D. J. Comb. Chem. 2005, 7, 826. https://doi.org/10.1021/cc049811f
  9. Finney, D. J. Probit Analysis; Cambridge University Press: Cambridge, England, 1952.
  10. Song, Y. S.; Sung, N. D.; Yu, Y. M.; Kim, B. T. Bull. Korean Chem. Soc. 2004, 25, 1513. https://doi.org/10.5012/bkcs.2004.25.10.1513
  11. Daylight Chemical Information Systems, Inc. www.daylight.com.
  12. Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165. https://doi.org/10.1021/cr00002a004
  13. Moon, T.; Chi, M. H.; Kim, D. H.; Yoon, C. N.; Choi, Y. S. Quant. Struct-Act. Relat. 2000, 19, 257. https://doi.org/10.1002/1521-3838(200006)19:3<257::AID-QSAR257>3.0.CO;2-2
  14. Golbraikh, A.; Tropsha, A. J. Mol. Graph. Model 2002, 20, 269. https://doi.org/10.1016/S1093-3263(01)00123-1

Cited by

  1. Synthesis, characterization, and computational studies on phthalic anhydride-based benzylidene-hydrazide derivatives as novel, potential anti-inflammatory agents vol.23, pp.5, 2014, https://doi.org/10.1007/s00044-013-0848-1
  2. 1,3,4-Oxadiazole Derivatives: Synthesis, Characterization, Antimicrobial Potential, and Computational Studies vol.2014, pp.None, 2014, https://doi.org/10.1155/2014/172791