DOI QR코드

DOI QR Code

Cyanide-Bridged CrIIIMnII Binuclear Complexes Based on [Mn(phen)2]2+ and Dicyanidechromate(III) Building Blocks: Syntheses, Crystal Structures, and Magnetic Properties

  • Li, Guo-Ling (School of Chemical Engineering and Technology, China University of Mining and Technology) ;
  • Zhang, Li-Fang (School of Chemical Engineering and Technology, China University of Mining and Technology) ;
  • Ni, Zhong-Hai (School of Chemical Engineering and Technology, China University of Mining and Technology) ;
  • Kou, Hui-Zhong (Department of Chemistry, Tsinghua University) ;
  • Cui, Ai-Li (Department of Chemistry, Tsinghua University)
  • 투고 : 2012.02.06
  • 심사 : 2012.02.17
  • 발행 : 2012.05.20

초록

Three new cyanide-bridged $Cr^{III}Mn^{II}$ binuclear complexes, $[Mn(phen)_2Cl][Cr(bpmb)(CN)_2]{\cdot}H_2O$ ($\mathbf{1}$) (phen = 1,10-phenanthroline, $bpdmb^{2-}$ = 1,2-bis(pyridine-2-carboxamido)-4-methyl-benzenate), $[Mn(phen)_2Cl][Cr(bpmb)-(CN)_2]{\cdot}H_2O$ ($\mathbf{2}$) ($bpdmb^{2-}$ = 1,2-bis(pyridine-2-carboxamido)-4,5-dimethyl-benzenate), and $[Mn(phen)_2Cl]-[Cr(bpClb)(CN)_2]{\cdot}CH_3OH{\cdot}H_2O$ ($\mathbf{3}$) ($bpClb^{2-}$ = 1,2-bis(pyridine-2-carboxamido)-4-chloro-benzenate) were obtained based on $Mn(phen)_2Cl_2$ and a series of dicyanidechromate(III) building blocks. Single crystal X-ray diffraction analysis shows the structures of the three complexes are dimeric type with two different metal centers linked by a cyanide group from corresponding dicyanidechromate(III) building block. Magnetic investigations indicate the existence of relatively weak antiferromagnetic coupling between Cr(III) and Mn(II) ions with best-fit constants $J_{CrMn}=-2.78(5)cm^{-1}$ for $\mathbf{1}$, $J_{CrMn}=-3.02(2)cm^{-1}$ for $\mathbf{2}$ and $J_{CrMn}=-2.27(3)cm^{-1}$ for $\mathbf{3}$ based on the spin exchange Hamiltonian = $-2J_{CrMn}\hat{S}_{Cr}\hat{S}_{Mn}$. The magneto-structural correlation of cyanide-bridged $Cr^{III}Mn^{II}$ complexes has been discussed at last.

키워드

참고문헌

  1. Beltran, L. M. C.; Long, J. R. Acc. Chem. Res. 2005, 38, 325 https://doi.org/10.1021/ar040158e
  2. Sato, O.; Tao, J.; Zhang, Y. Z. Angew. Chem. Int. Ed. 2007, 46, 2152. https://doi.org/10.1002/anie.200602205
  3. Wang, S.; Ding, X. H.; Li, Y. H.; Huang, W. Coord. Chem. Res. 2012, 256, 439 https://doi.org/10.1016/j.ccr.2011.10.029
  4. Kou, H. Z.; Gao, S.; Zhang, J.; Wen, G. H.; Su, G.; Zheng, R. K.; Zhang, X. X. J. Am. Chem. Soc. 2001, 123, 11809. https://doi.org/10.1021/ja016656p
  5. Tomono, K.; Tsunobuchi, Y.; Nakabayashi, K.; Ohkoshi, S. I. Inorg. Chem. 2010, 49, 1298. https://doi.org/10.1021/ic9022079
  6. Okawa, H.; Ohba, M. Bull. Chem. Soc. Jpn. 2002, 75, 1191. https://doi.org/10.1246/bcsj.75.1191
  7. Ni, Z. H.; Kou, H. Z.; Zhang, L. F.; Ge, C.; Cui, A. L.; Wang, R. J.; Li, Y.; Sato, O. Angew. Chem. Int. Ed. 2005, 44, 7742. https://doi.org/10.1002/anie.200502699
  8. Jiang, L.; Choi, H. J.; Feng X. L.; Lu, T. B.; Long, J. R. Inorg. Chem. 2007, 46, 2181. https://doi.org/10.1021/ic061924b
  9. Peng, Y. H.; Meng, Y. F.; Hu, L.; Li, Q. X.; Li, Y. Z.; Zuo, J. L.; You, X. Z. Inorg. Chem. 2010, 49, 1905. https://doi.org/10.1021/ic9023713
  10. Mitsumoto, K; Oshiro, O.; Nishikawa, H.; Shiga, T. Yamamura, Y.; Saito, K.; Oshio, H. Chem. Eur. J. 2011, 17, 9612.
  11. Xu, Y.; Shen, X. P.; Zhou, H.; Shu, H. Q.; Li, W.; Yuan, A. H. J. Mol. Stru. 2009, 921, 341. https://doi.org/10.1016/j.molstruc.2009.01.039
  12. Pardo, E.; Verdaguer, M.; Herson, P.; Rousselière, H.; Cano, J.; Julve, M.; Lloret, F.; Lescouìzec, R. Inorg. Chem. 2011, 50, 6250. https://doi.org/10.1021/ic200616p
  13. Liu, T.; Zhang, Y. J.; Kanegawa, S.; Sato, O. J. Am. Chem. Soc. 2010, 132, 8250. https://doi.org/10.1021/ja1027953
  14. Kim, J. I.; Yoo, H. S.; Kho, E. K.; Kim, H. C.; Hong, C. S. Inorg. Chem. 2007, 46, 8481. https://doi.org/10.1021/ic701361a
  15. Shatruk, M.; Dragulescu-Andrasi, A.; Chambers, K. E.; Stoian, S. A.; Bominaar, E. L.; Achim, C.; Dunbar, K. R. J. Am. Chem. Soc. 2007, 129, 6104. https://doi.org/10.1021/ja066273x
  16. Li, D. F.; Clerac, R.; Roubeau, O.; Harte, E.; Mathonière, C.; Bris, R. L.; Holmes, S. M. J. Am. Chem. Soc. 2008, 130, 252. https://doi.org/10.1021/ja0757632
  17. Bo a, R.; Salitros, I.; Kozisek, J.; Linares, J.; Monco, J.; Renz, F. Dalton. Trans. 2010, 2198.
  18. Wei, R. J.; Huo, Q.; Tao, J.; Huang, R. B.; Zheng, L. S. Angew. Chem. Ed. Int. 2011, 50, 8940. https://doi.org/10.1002/anie.201103648
  19. Ni, Z. H.; Kou, H. Z.; Zhao, Y. H.; Zheng, L.; Wang, R. J.; Cui, A. L.; Sato, O. Inorg. Chem. 2005, 44, 2050. https://doi.org/10.1021/ic0489903
  20. Ni, Z. H.; Zhang, L. F.; Tangoulis, V.; Werensdorfer, W.; Cui, A. L.; Sato, O.; Kou, H. Z. Inorg. Chem. 2007, 46, 6029. https://doi.org/10.1021/ic700528a
  21. Zhang, D. P.; Wang, H. L.; Chen, Y. T.; Ni, Z. H.; Tian, L. J.; Jiang, J. Z. Inorg. Chem. 2009, 48, 5488. https://doi.org/10.1021/ic900483z
  22. Kou, H. Z.; Ni, Z. H.; Liu, C. M.; Zhang, D. Q.; Cui, A. L. New J. Chem. 2009, 33, 2296. https://doi.org/10.1039/b9nj00316a
  23. Ni, Z. H.; Tao, J.; Wernsdorfer, W.; Cui, A. L.; Kou, H. Z. J. Chem. Soc. Dalton Trans. 2009, 2788.
  24. Zhang, D. P.; Wang, H. L.; Tian, L. J.; Kou, H. Z.; Jiang, J. Z.; Ni, Z. H. Cryst. Growth Des. 2009, 9, 3989. https://doi.org/10.1021/cg9001253
  25. Zhang, D. P.; Zhang, L. F.; Zhang, Z. D.; Ni, Z. H. Bull. Korean Chem. Soc. 2011, 32, 2544. https://doi.org/10.5012/bkcs.2011.32.8.2544
  26. Zhang, D. P.; Zhang, L. F; Chen, X.; Ni, Z. H. Transition Met. Chem. 2011, 36, 539. https://doi.org/10.1007/s11243-011-9500-4
  27. Kim, J. I.; Kwak, H. Y.; Yoon, J. H.; Ryu, D. W.; I. Yoo, Y.; Yang, N.; Cho, B. K.; Park, J. G.; Le, H.; Hong, C. S. Inorg. Chem. 2009, 48, 2956. https://doi.org/10.1021/ic802033q
  28. Kim, J. I.; Yoon, J. H.; Kwak, H. Y.; Koh, E. K.; Hong, C. S. Eur. J. Inorg. Chem. 2008, 2756.
  29. McCann, S.; McCann, M.; Casey, R. M. T.; Jackman, M.; Devereux, M.; McKee, V. Inorg. Chim. Acta 1998, 279, 24. https://doi.org/10.1016/S0020-1693(98)00031-0
  30. Leung, W. H.; Ma, J. X.; Yam, V. W. W.; Che, C. M.; Poon, C. K. J. Chem. Soc., Dalton Trans. 1991, 1071
  31. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112.
  32. Brandenburg, K. DIAMOND. Version 3.1. Crystal Impact GbR, Bonn, Germany, 2004-2005.
  33. Ni, Z. H.; Kou, H. Z.; Zheng, L.; Zhao, Y. H.; Zhang, L. F.; Wang, R. J.; Cui, A. L.; Sato, O. Inorg. Chem. 2005, 44, 4728. https://doi.org/10.1021/ic050181b
  34. Richard, J. P.; Leone, S.; Kevin, J. B.; Fallon, G. D.; Moubaraki, B.; Murray, K. S. Chem. Commun. 2001, 333.
  35. Marvaud, V.; Decroix, C.; Scuiller, A.; Guyard-Duhayon, C.; Vaissermann, J.; Gonnet, F.; Verdaguer, M. Chem. Eur. J. 2003, 9, 1677. https://doi.org/10.1002/chem.200390192
  36. Zhang, Y. Z.; Gao, S.; Wang, Z. M.; Su, G.; Su, H. L.; Pan, F. Inorg. Chem. 2005, 44, 4534. https://doi.org/10.1021/ic0484194
  37. Zhang, Y.-Z.; Wan, Z.-M.; Gao, S. Inorg. Chem. 2006, 45, 10404. https://doi.org/10.1021/ic0612092
  38. Ni, Z. H.; Zhang, L. F.; Ge, C. H.; Cui, A. L.; Kou, H. Z.; Jiang, J. Inorg. Chem. Commu. 2008, 11, 94. https://doi.org/10.1016/j.inoche.2007.10.017
  39. Toma, L.; Lescouëzec, R.; Vaissermann, J.; Delgado, F. S.; Ruiz- Pérez, C.; Carrasco, R.; Cano, J.; Lloret, F.; Julve, M. Chem. Eur. J. 2004, 10, 6130. https://doi.org/10.1002/chem.200400611

피인용 문헌

  1. complexes: structure and magnetic characterizations vol.17, pp.16, 2015, https://doi.org/10.1039/C5CE00261C
  2. Syntheses and crystal structures of four cyanide-bridged trinuclear iron(III)–copper(II)–iron(III) complexes exhibiting abnormal antiferromagnetic coupling vol.40, pp.4, 2015, https://doi.org/10.1007/s11243-015-9933-2
  3. Two double end-on cyanato-bridged dinuclear manganese(II) complexes exhibiting abnormal magnetic coupling for the Mn(II)–N–Mn(II) linkage vol.40, pp.7, 2015, https://doi.org/10.1007/s11243-015-9970-x
  4. Copper(II) complex as a precursor for formation of cyano-bridged pentanuclear FeIII-CuII bimetallic assembly: Synthesis, characterization, crystal structure and antibacterial activity vol.129, pp.4, 2017, https://doi.org/10.1007/s12039-017-1255-9
  5. Discrete versus 1D Compounds based on Pentagonal Bipyramid Coordination Geometries: A Matter of Solubility? vol.2021, pp.48, 2012, https://doi.org/10.1002/ejic.202100834