DOI QR코드

DOI QR Code

Highly Crystalline 2,6,9,10-Tetrakis((4-hexylphenyl)ethynyl)anthracene for Efficient Solution-Processed Field-effect Transistors

  • Hur, Jung-A (Department of Chemistry, Research Institute for Natural Sciences, Korea University) ;
  • Shin, Ji-Cheol (Department of Chemistry, Research Institute for Natural Sciences, Korea University) ;
  • Lee, Tae-Wan (Department of Chemistry, Research Institute for Natural Sciences, Korea University) ;
  • Kim, Kyung-Hwan (Department of Chemistry, Research Institute for Natural Sciences, Korea University) ;
  • Cho, Min-Ju (Department of Chemistry, Research Institute for Natural Sciences, Korea University) ;
  • Choi, Dong-Hoon (Department of Chemistry, Research Institute for Natural Sciences, Korea University)
  • Received : 2011.12.19
  • Accepted : 2012.02.16
  • Published : 2012.05.20

Abstract

A new anthracene-containing conjugated molecule was synthesized through the Sonogashira coupling and reduction reactions. 1-Ethynyl-4-hexylbenzene was coupled to 2,6-bis((4-hexylphenyl) ethynyl)anthracene-9,10-dione through a reduction reaction to generate 2,6,9,10-tetrakis((4-hexylphenyl)ethynyl) anthracene. The semiconducting properties were evaluated in an organic thin film transistor (OTFT) and a single-crystal field-effect transistor (SC-FET). The OTFT showed a mobility of around 0.13 $cm^2\;V^{-1}\;s^{-1}$ ($I_{ON}/I_{OFF}$ > $10^6$), whereas the SC-FET showed a mobility of 1.00-1.35 $cm^2\;V^{-1}\;s^{-1}$, which is much higher than that of the OTFT. Owing to the high photoluminescence quantum yield of 2,6,9,10-tetrakis((4-hexylphenyl)ethynyl) anthracene, we could observe a significant increase in drain current under irradiation with visible light (${\lambda}$ = 538 nm, 12.5 ${\mu}W/cm^2$).

Keywords

References

  1. Marrocchi, F. A.; Seri, M.; Kim, C.; Marks, T. J.; Facchetti, A.; Taticchi, A. J. Am. Chem. Soc. 2010, 132, 6108. https://doi.org/10.1021/ja910420t
  2. Park, S. K.; Jackson, T. N.; Anthony, J. E.; Mourey, D. A. Appl. Phys. Lett. 2007, 91, 063514. https://doi.org/10.1063/1.2768934
  3. Zhang, Y.; Petta, J. R.; Ambily, S.; Shen, Y.; Ralph, D. C.; Malliaras, G. G. Adv. Mater. 2003, 15, 1632. https://doi.org/10.1002/adma.200305158
  4. Ha, J. S.; Kim, K. H.; Choi, D. H. J. Am. Chem. Soc. 2011, 133, 10364. https://doi.org/10.1021/ja203189h
  5. Zhang, L.; Tan, L.;Wang, Z.; Hu, W.; Zhu, D. Chem. Mater. 2009, 21, 1993. https://doi.org/10.1021/cm900369s
  6. Li, H.; Valiyaveettil, S. Tetrahedron Lett. 2009, 50, 5311. https://doi.org/10.1016/j.tetlet.2009.06.119
  7. Wang, C.; Liu, Y.; Ji, Z.; Wang, E.; Li, R.; Jiang, H.; Tang, Q.; Li, H.; Hu, W. Chem. Mater. 2009, 21, 2840. https://doi.org/10.1021/cm900511g
  8. Hoang, M. H.; Cho, M. J.; Kim, K. H.; Lee, T. W.; Jin, J. I.; Choi, D. H. Chem. Lett. 2010, 39, 396. https://doi.org/10.1246/cl.2010.396
  9. Pisula, W.; Menon, A.; Stepputat, M.; Lieberwirth, I.; Kolb, U.; Tracz, A.; Sirringhaus, H.; Pakula, T.; Mullen, K. Adv. Mater. 2005, 17, 684. https://doi.org/10.1002/adma.200401171
  10. Ahmed, M. O.; Wang, C. M.; Keg, P.; Pisula, W.; Lam, Y. M.; Ong, B. S.; Ng, S. C.; Chen, Z. K.; Mhaisalkar, S. G. J. Mater. Chem. 2009, 19, 3449. https://doi.org/10.1039/b900979e
  11. Hunziker, C.; Zhan, X.; Losio, P. A.; Figi, H.; Kwon, O. P.; Barlow, S.; Guenter, P.; Marder, S. R. J. Mater. Chem. 2007, 17, 4972. https://doi.org/10.1039/b711483d
  12. Kim, K. H.; Chi, Z.; Cho, M. J.; Jin, J.-I.; Cho, M. Y.; Kim, S. J.; Joo, J.-S.; Choi, D. H. Chem. Mater. 2007, 19, 4925. https://doi.org/10.1021/cm071760c
  13. Hur, J. A.; Bae, S. Y.; Kim, K. H.; Lee, T. W.; Cho, M. J.; Choi, D. H. Org. Letter. 2011, 13, 1948. https://doi.org/10.1021/ol200299s
  14. Hodge, P.; Power, G. A.; Rabjohns, M. A. Chem. Commun. 1997, 73.
  15. Zhang, H. C.; Guo, E. Q.; Zhang, Y. L.; Ren, P. H.; Yang, W. J. Chem. Mater. 2009, 21, 5125. https://doi.org/10.1021/cm9020707
  16. Kim, K. H.; Bae, S. Y.; Kim, Y. S.; Hur, J. A.; Hoang, M. H.; Lee, T. W.; Cho, M. J.; Kim, Y.; Kim, M.; Jin, J.-I.; Kim, S.-J.; Lee, K.; Lee, S. J.; Choi, D. H. Advanced Materials 2011, 23, 3095. https://doi.org/10.1002/adma.201100944
  17. Cho, M. Y.; Kim, S. J.; Han, Y. D.; Kim, K. H.; Choi, D. H.; Joo, J. Advanced Functional Materials 2008, 18, 2905. https://doi.org/10.1002/adfm.200800358
  18. Johnson, N. M.; Chiang, A. Appl. Phys. Lett. 1984, 45, 1102. https://doi.org/10.1063/1.95031

Cited by

  1. Nanocomposite approaches for enhancing the DC and photoconductivity of DNA films vol.24, pp.33, 2013, https://doi.org/10.1088/0957-4484/24/33/335203
  2. J-dimer emission in interwoven metal-organic frameworks vol.11, pp.17, 2012, https://doi.org/10.1039/d0sc00876a
  3. Polycyclic Aromatic Hydrocarbons Bearing Polyethynyl Bridges: Synthesis, Photophysical Properties, and their Applications vol.10, pp.7, 2021, https://doi.org/10.1002/ajoc.202100134