DOI QR코드

DOI QR Code

A Highly Efficient and Selective Nickel/Clay Catalyst for Liquid Phase Hydrogenation of Maleic Anhydride to Succinic Anhydride

  • Tian, Weiping (The State Key Laboratory of Chemical Engineering, East China University of Science and Technology) ;
  • Guo, Shaofei (The State Key Laboratory of Chemical Engineering, East China University of Science and Technology) ;
  • Shi, Li (The State Key Laboratory of Chemical Engineering, East China University of Science and Technology)
  • Received : 2011.10.07
  • Accepted : 2012.02.15
  • Published : 2012.05.20

Abstract

Three Ni-based catalysts with different clay as support were prepared and tested in the hydrogenation of maleic anhydride, among which Ni/clay1 showed best activity and selectivity. Over Ni/clay1 catalyst prepared by impregnation method, 97.14% conversion of maleic anhydride and 99.55% selectivity to succinic anhydride were obtained at $180^{\circ}C$ under a pressure of 1 MPa. Catalytic activity was greatly influenced by the temperature and weighted hourly space velocity. Catalyst deactivation studies showed that this catalyst have a long life time, the yield of MA still higher than 90% even after a reaction time of 60 h. X-ray diffraction (XRD) and $H_2$ temperature programmed reduction (TPR) were use to investigate the properties of the catalyst. XRD and TPR studies showed that Ni was present as $Ni^{2+}$ on the support, which indicated that there was no elemental nickel ($Ni^0$) and $Ni_2O_3$ in the unreduced samples. The formation of Ni was strong impact on catalytic activity.

Keywords

References

  1. Minoda, S.; Miyajima, M. Hydroc. Process 1970, 49, 176.
  2. Harris, N.; Tuck, M. W. Hydroc. Process 1990, 69, 79.
  3. Brownstein, A. M. Chem. Tech. 1991, 21, 506.
  4. Castiglioni, G. L.; Gazzano, M.; Stefani, G.; Vaccari, A. Heterogen. Catal. Fine. Chem. 1993, 78, 275.
  5. Seong, M. J.; Eric, G.; Sang, Y. J.; Kwang, C. P.; Jung, U. C. Catal. Today 2003, 87, 171. https://doi.org/10.1016/j.cattod.2003.10.010
  6. Meyer, C. I.; Marchi, A. J.; Monzon, A.; Garetto, T. F. Appl. Catal. A 2009, 367, 122. https://doi.org/10.1016/j.apcata.2009.07.041
  7. Zhang, D. Z.; Yin, H. B.; Xue, J. J.; Ge, C.; Jiang, T. S.; Yu, L. B.; Shen, Y. T. Ind. Eng. Chem. Res. 2009, 48, 11220. https://doi.org/10.1021/ie9013875
  8. Zhang, D. Z.; Yin, H. B.; Xue, J. J.; Ge, C.; Jiang, T. S.; Yu, L. B.; Shen, Y. T. J. Ind. Eng. Chem. 2009, 15, 537. https://doi.org/10.1016/j.jiec.2009.01.010
  9. Liu, P.; Liu, Y.; Yin, Y. Q. J. Mol. Catal. A: Chem. 1999, 138, 129. https://doi.org/10.1016/S1381-1169(98)00170-8
  10. Thomas, W. D.; Taylor, P. D.; Tomfohrde, H. F. U.S. Patent 1992, 5149836.
  11. Thakur, D. S.; Roberts, B. R.; Sullivan, T. J.; Vichek, A. L. U.S. Patent 1992, 5155086.
  12. Wegman, R. W.; Bryant, D. R. U.S. Patent 1993, 5191091.
  13. Bjornson, G.; Sturk, J. U.S. Patent 1992, 5086030.
  14. Hara, Y.; Kusaka, H.; Inagaki, H.; Takahashi, K.; Wada, K. J. Catal. 2000, 194, 188. https://doi.org/10.1006/jcat.2000.2945
  15. Li, J.; Tian, W. P.; Shi, L. Catal. Lett. 2011, 141, 565. https://doi.org/10.1007/s10562-010-0533-7
  16. Kirumakki, S. R.; Shpeizer, B. G.; Sagar, G. V.; Chary, K. V. R.; Clearfield, A. J. Catal. 2006, 242, 319. https://doi.org/10.1016/j.jcat.2006.06.014
  17. Messori, M.; Vaccari, A. J. Catal. 1994, 150, 177. https://doi.org/10.1006/jcat.1994.1334

Cited by

  1. The influence of Montmorillonite K10 as a support in the nickel catalyzed hydrogenation of octanal vol.23, pp.1, 2016, https://doi.org/10.1007/s10934-015-0068-9