DOI QR코드

DOI QR Code

Facile Synthesis of 5-Hydroxy-3-pyrrolin-2-ones from Morita-Baylis-Hillman Adducts

  • Lim, Cheol-Hee (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Kim, Sung-Hwan (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Kim, Jae-Nyoung (Department of Chemistry and Institute of Basic Science, Chonnam National University)
  • Received : 2012.01.31
  • Accepted : 2012.02.14
  • Published : 2012.05.20

Abstract

An efficient synthetic method of various 5-hydroxy-3-pyrrolin-2-one derivatives has been developed starting from the MBH adducts. In addition, some synthetic applicability of the prepared 5-hydroxy-3-pyrrolin-2-ones was demonstrated including the synthesis of lactam-fused tetrahydroisoquinolines.

Keywords

References

  1. Kim, K. H.; Lee, H. S.; Kim, S. H.; Lee, K. Y.; Lee, J.-E.; Kim, J. N. Bull. Korean Chem. Soc. 2009, 30, 1012-1020. https://doi.org/10.5012/bkcs.2009.30.5.1012
  2. Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811-891. https://doi.org/10.1021/cr010043d
  3. Basavaiah, D.; Reddy, B. S.; Badsara, S. S. Chem. Rev. 2010, 110, 5447-5674. https://doi.org/10.1021/cr900291g
  4. Singh, V.; Batra, S. Tetrahedron 2008, 64, 4511-4574. https://doi.org/10.1016/j.tet.2008.02.087
  5. Declerck, V.; Martinez, J.; Lamaty, F. Chem. Rev. 2009, 109, 1-48. https://doi.org/10.1021/cr068057c
  6. Ciganek, E. In Organic Reactions; Paquette, L. A., Ed.; John Wiley & Sons: New York, 1997; Vol. 51, pp 201-350.
  7. Kim, J. N.; Lee, K. Y. Curr. Org. Chem. 2002, 6, 627-645. https://doi.org/10.2174/1385272023374094
  8. Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1481-1490. https://doi.org/10.5012/bkcs.2005.26.10.1481
  9. Radha Krishna, P.; Sachwani, R.; Reddy, P. S. Synlett 2008, 2897-2912.
  10. Gowrisankar, S.; Lee, H. S.; Kim, S. H.; Lee, K. Y.; Kim, J. N. Tetrahedron 2009, 65, 8769-8780. https://doi.org/10.1016/j.tet.2009.07.034
  11. Snider, B. B.; Neubert, B. J. J. Org. Chem. 2004, 69, 8952-8955 https://doi.org/10.1021/jo048605r
  12. Agatsuma, T.; Akama, T.; Nara, S.; Matsumiya, S.; Nakai, R.; Ogawa, H.; Otaki, S.; Lkeda, S.-I.; Saitoh, Y.; Kanda, Y. Org. Lett. 2002, 4, 4387-4390. https://doi.org/10.1021/ol026923b
  13. Kakeya, H.; Onozawa, C.; Sato, M.; Arai, K.; Osada, H. J. Med. Chem. 1997, 40, 391-394. https://doi.org/10.1021/jm960719a
  14. Singh, S. B.; Goetz, M. A.; Jones, E. T.; Bills, G. F.; Giacobbe, R. A.; Herranz, L.; Stevens-Miles, S.; Williams, D. L. J. Org. Chem. 1995, 60, 7040-7042. https://doi.org/10.1021/jo00126a071
  15. Clark, A. J.; Dell, C. P.; McDonagh, J. M.; Geden, J.; Mawdsley, P. Org. Lett. 2003, 5, 2063-2066 https://doi.org/10.1021/ol030045f
  16. Sortino, M.; Garibotto, F.; Filho, V. C.; Gupta, M.; Enriz, R.; Zacchino, S. Bioorg. Med. Chem. 2011, 19, 2823-2834. https://doi.org/10.1016/j.bmc.2011.03.038
  17. Ma, S.; Xie, H. J. Org. Chem. 2002, 67, 6575-6578. https://doi.org/10.1021/jo025967v
  18. Yang, L.; Lei, C.-H.; Wang, D.-X.; Huang, Z.-T.; Wang, M.-X. Org. Lett. 2010, 12, 3918-3921. https://doi.org/10.1021/ol101607z
  19. Basso, A.; Banfi, L.; Galatini, A.; Guanti, G.; Rastrelli, F.; Riva, R. Org. Lett. 2009, 11, 4068-4071. https://doi.org/10.1021/ol901512c
  20. Dias-Jurberg, I.; Gagosz, F.; Zard, S. Z. Org. Lett. 2010, 12, 416-419. https://doi.org/10.1021/ol902472r
  21. Adib, M.; Mahdavi, M.; Noghani, M. A.; Bijanzadeh, H. R. Tetrahedron Lett. 2007, 48, 8056-8059. https://doi.org/10.1016/j.tetlet.2007.09.030
  22. Adhikari, R.; Jones, D. A.; Liepa, A. J.; Nearn, R. H. Aust. J. Chem. 2005, 58, 882-890. https://doi.org/10.1071/CH05286
  23. Coleman, R. S.; Walczak, M. C.; Campbell, E. L. J. Am. Chem. Soc. 2005, 127, 16038-16039. https://doi.org/10.1021/ja056217g
  24. Jiang, L.-J.; Lan, H.-Q.; Zheng, J.-F.; Ye, J.-L.; Huang, P.-Q. Synlett 2009, 297-301.
  25. Ma, S.; Xie H. Org. Lett. 2000, 2, 3801-3803. https://doi.org/10.1021/ol006504j
  26. Kraus, G. A.; Thomas, P. J.; Bougie, D.; Chen, L. J. Org. Chem. 1990, 55, 1624-1627. https://doi.org/10.1021/jo00292a042
  27. Bouillon, J.-P.; Tinant, B.; Nuzillard, J.-M.; Portella, C. Synthesis 2004, 711-721.
  28. Harigaya, Y.; Suzuki, T.; Onda, M. Chem. Pharm. Bull. 1979, 27, 2636-2641. https://doi.org/10.1248/cpb.27.2636
  29. Broussy, S.; Bernardes- Genisson, V.; Gornitzka, H.; Bernadou, J.; Meunier, B. Org. Biomol. Chem. 2005, 3, 666-669. https://doi.org/10.1039/b415439h
  30. Kim, J. M.; Lee, S.; Kim, S. H.; Lee, H. S.; Kim, J. N. Bull. Korean Chem. Soc. 2008, 29, 2215-2220. https://doi.org/10.5012/bkcs.2008.29.11.2215
  31. Lim, J. W.; Kim, K. H.; Park, B. R.; Kim, J. N. Tetrahedron Lett. 2011, 52, 6545-6549. https://doi.org/10.1016/j.tetlet.2011.09.125
  32. Yamashita, T.; Yamashita, M.; Aoyagi, S. Tetrahedron Lett. 2011, 52, 4266-4268. https://doi.org/10.1016/j.tetlet.2011.05.124
  33. Yamashita, M.; Yamashita, T.; Aoyagi, S. Org. Lett. 2011, 13, 2204-2207. https://doi.org/10.1021/ol2004353
  34. Wittine, K.; Babic, M. S.; Kosutic, M.; Cetina, M.; Rissanen, K.; Pavelic, S. K.; Paravic, A. T.; Sedic, M.; Pavelic, K.; Mintas, M. Eur. J. Med. Chem. 2011, 46, 2770-2785. https://doi.org/10.1016/j.ejmech.2011.03.066
  35. Li, Y.-H.; Zhou, Y.; Suolang, G.; Bianba, C.; Ding, L.-S.; Feng, H. Helv. Chima. Acta 2011, 94, 474-480. https://doi.org/10.1002/hlca.201000237
  36. Blazecka, P. G.; Belmont, D.; Curran, T.; Pflum, D.; Zhang, J. Org. Lett. 2003, 5, 5015-5017. https://doi.org/10.1021/ol035994n
  37. Pattarozzi, M.; Roncaglia, F.; Accorsi, L.; Parsons, A. F.; Ghelfi, F. Tetrahedron 2010, 66, 1357-1364. https://doi.org/10.1016/j.tet.2009.11.111
  38. Kumar, N.; Iskander, G. PCT Int. Appl. 2007, WO 2007/085042 (Chem. Abstr. 2007, 147: 235006).
  39. Kaluza, Z.; Mostowicz, D.; Dolega, G.; Wojcik, R. Tetrahedron 2008, 64, 2321-2328. https://doi.org/10.1016/j.tet.2008.01.011
  40. Kaluza, Z.; Mostowicz, D.; Dolega, G.; Mroczko, K.; Wojcik, R. Tetrahedron 2006, 62, 943-953. https://doi.org/10.1016/j.tet.2005.10.028
  41. Zhang, F.; Simpkins, N. S.; Wilson, C. Tetrahedron Lett. 2007, 48, 5942-5947. https://doi.org/10.1016/j.tetlet.2007.06.111
  42. Collado, M. I.; Manteca, I.; Sotomayor, N.; Villa, M.-J.; Lete, E. J. Org. Chem. 1997, 62, 2080-2092. https://doi.org/10.1021/jo962155o
  43. Pin, F.; Comesse, S.; Garrigues, B.; Marchalin, S.; Daich, A. J. Org. Chem. 2007, 72, 1181-1191. https://doi.org/10.1021/jo062077x
  44. Hitchings, G. J.; Vernon, J. M. J. Chem. Soc., Perkin Trans. 1 1990, 1757-1763.
  45. Bahajaj, A. A.; Vernon, J. M.; Wilson, G. D. J. Chem. Soc., Perkin Trans. 1 2001, 1446-1451.
  46. Alcaide, B.; Rodriguez-Lopez, J. J. Chem. Soc., Perkin Trans. 1 1990, 2451-2457.

Cited by

  1. )-ones vol.358, pp.4, 2016, https://doi.org/10.1002/adsc.201500994
  2. ZrCl4 as an efficient catalyst for one-pot four-component synthesis of polysubstituted dihydropyrrol-2-ones vol.42, pp.4, 2016, https://doi.org/10.1007/s11164-015-2178-z
  3. -pyrrol-2-one under consideration pp.1466-8033, 2017, https://doi.org/10.1039/C7CE01717K
  4. Towards Reaction Control: An Expeditious Access to Racemic 5-Substituted Tetramates and 5-Substituted Tetramic Acids from Malimides vol.33, pp.6, 2014, https://doi.org/10.1002/cjoc.201400762
  5. Methylene Blue as a Photosensitizer and Redox Agent: Synthesis of 5‐Hydroxy‐1H‐pyrrol‐2(5H)‐ones from Furans vol.127, pp.21, 2012, https://doi.org/10.1002/ange.201500744
  6. Methylene Blue as a Photosensitizer and Redox Agent: Synthesis of 5‐Hydroxy‐1H‐pyrrol‐2(5H)‐ones from Furans vol.54, pp.21, 2012, https://doi.org/10.1002/anie.201500744
  7. Base-Mediated Intramolecular Cyclization of α-Nitroethylallenic Esters as a Synthetic Route to 5-Hydroxy-3-pyrrolin-2-ones vol.86, pp.8, 2012, https://doi.org/10.1021/acs.joc.1c00109