DOI QR코드

DOI QR Code

Composite of Indium and Polysorbate 20 as Inhibitor for Zinc Corrosion in Alkaline Solution

  • Li, Xiaoping (School of Chemistry and Environment, South China Normal University) ;
  • Liang, Man (School of Chemistry and Environment, South China Normal University) ;
  • Zhou, Hebing (School of Materials Science and Engineering, South China University of Technology) ;
  • Huang, Qiming (School of Chemistry and Environment, South China Normal University) ;
  • Lv, Dongsheng (School of Chemistry and Environment, South China Normal University) ;
  • Li, Weishan (School of Chemistry and Environment, South China Normal University)
  • Received : 2011.12.25
  • Accepted : 2012.02.06
  • Published : 2012.05.20

Abstract

The combined use of indium and polysorbate 20 (Tween 20) was considered as a new inhibition technique for zinc corrosion. Zn and Zn-In alloy coatings were prepared by electrodeposition and their morphology and composition were characterized by scanning electron microscopy (SEM) and inductively coupled plasma atomic emission spectrometry (ICP-AES). The corrosion inhibition effect of indium and Tween 20 on zinc was investigated by polarization curves and electrochemical impedance spectroscopy (EIS). The corrosion inhibition efficiencies obtained from Tafel and EIS analyses are well in agreement. Zinc corrosion can be inhibited to some extent by the individual use of indium and Tween 20 and higher corrosion inhibition efficiency can be obtained by the combined use of indium and Tween 20.

Keywords

References

  1. Coates, D.; Ferreira, E.; Charkey A. J. Power Sources 1997, 65, 109. https://doi.org/10.1016/S0378-7753(96)02614-6
  2. Doche, M. L.; Hihn, J. Y.; Touyeras, F.; Lorimer, J. P.; Mason, T. J.; Plattes, M. Ultrason. Sonochem. 2001, 8, 291. https://doi.org/10.1016/S1350-4177(01)00091-8
  3. Zhang, X. G. J. Power Sources 2006, 163, 591. https://doi.org/10.1016/j.jpowsour.2006.09.034
  4. Gagnon, E. G. J. Electrochem. Soc. 1986, 133, 1989. https://doi.org/10.1149/1.2108327
  5. Jain, R.; Adler, T. C. J. Appl. Electrochem. 1992, 22, 1039. https://doi.org/10.1007/BF01029582
  6. Li, Q. W.; Liu, R. Q.; Xia, X. Rare Met. 1998, 17, 145.
  7. Binder, L.; Odar, W. J. Power Sources 1984, 13, 9. https://doi.org/10.1016/0378-7753(84)80050-6
  8. Thornton, R. F.; Carlson, E. J. J. Electrochem. Soc. 1980, 127, 1448. https://doi.org/10.1149/1.2129928
  9. Dzieciuch, M. A.; Gupta, N.; Wroblowa, H. S. J. Electrochem. Soc. 1988, 135, 2415. https://doi.org/10.1149/1.2095349
  10. Adler, T. C.; McLarnon, F. R.; Cairns, E. J. J. Electrochem. Soc. 1993, 140, 289. https://doi.org/10.1149/1.2221039
  11. Zhou, H. B.; Xu, M. Q.; Huang, Q. M.; Cai, Z. P.; Li, W. S. J. Appl. Electrochem. 2009, 39, 1739. https://doi.org/10.1007/s10800-009-9868-4
  12. Paramasivam, M.; Jayachandran, M.; Venkatakrishna-Lyer, S. J. Appl. Electrochem. 2003, 33, 303. https://doi.org/10.1023/A:1024141918663
  13. Perez, M. G.; O'Keefe, M. J.; O'Keefe, T.; Ludlow, D. J. Appl. Electrochem. 2007, 37, 225. https://doi.org/10.1007/s10800-006-9239-3
  14. Zhou, H. B.; Yang, M. Z.; Li, W. S.; Xu, M. Q.; Huang, Q. M.; Hu, S. J. Rare Metal Mat. Eng. (in chinese) 2008, 37, 404.
  15. Cai, Z. P.; Zhou, H. B.; Li, W. S.; Huang, Q. M.; Liang, Y.; Xiao, X. H.; Chen, J. Q. Rare Metal Mat. Eng. (in chinese) 2009, 38, 1676.
  16. Vatsalarani, J.; Geetha, S.; Trivedi, D. C.; Warrier, P. C. J. Power Sources 2006, 158, 1484. https://doi.org/10.1016/j.jpowsour.2005.10.094
  17. Hu, C. G.; Hu, S. S. J. Solid State Electrochem. 2004, 8, 947. https://doi.org/10.1007/s10008-004-0514-0
  18. Dobryszycki, J.; Biallozor, S. Corros. Sci. 2001, 43, 1309. https://doi.org/10.1016/S0010-938X(00)00155-4
  19. Wen, D.; Zhu, X.; Zhao, F. Q.; Huang, L. J.; Zeng, B. Z. J. Solid State Electrochem. 2006, 10, 69. https://doi.org/10.1007/s10008-005-0657-7
  20. Cohen-Hyams, T.; Ziengerman, Y.; Ein-Eli, Y. J. Power Sources 2006, 157, 584. https://doi.org/10.1016/j.jpowsour.2005.07.090
  21. Liang, M.; Zhou, H. B.; Huang, Q. M.; Hu, S. J.; Li, W. S. J. Appl. Electrochem. 2011, 41, 991. https://doi.org/10.1007/s10800-011-0328-6
  22. Ein-Eli, Y.; Auinat, M.; Starosvetsky, D. J. Power Sources 2003, 114, 330. https://doi.org/10.1016/S0378-7753(02)00598-0
  23. Zhou, H. B.; Huang, Q. M.; Liang, M.; Lv, D. S.; Xu, M. Q. Mater. Chem. Phys. 2011, 128, 214. https://doi.org/10.1016/j.matchemphys.2011.02.061
  24. Fouda, A. S.; Madkour, L. H.; El-Shafel, A. A.; Abd ElMaksoud, S. A. Bull. Korean Chem. Soc. 1995, 16, 454.
  25. Mckubre, M. C. H.; Macdonald, D. D. J. Electrochem. Soc. 1981, 128, 524. https://doi.org/10.1149/1.2127450
  26. Armstrong, R. D.; Bulman, G. M. J. Electroanal. Chem. 1970, 25, 121. https://doi.org/10.1016/S0022-0728(70)80045-6
  27. Wilcox, G. D.; Mitchell, P. J. J. Power Sources 1989, 2, 345.
  28. Ashassi-Sorkhabi, H.; Es'haghi, M. J. Solid State Electrochem. 2009, 13, 1297. https://doi.org/10.1007/s10008-008-0673-5

Cited by

  1. Improved electrochemical performance of Zn-air secondary batteries via novel organic additives vol.65, pp.10, 2018, https://doi.org/10.1002/jccs.201700445
  2. Physicochemical characterization of sodium stearoyl lactylate (SSL), polyoxyethylene sorbitan monolaurate (Tween 20) and κ-carrageenan vol.19, pp.None, 2012, https://doi.org/10.1016/j.dib.2018.05.064
  3. Corrosion Performance of Electrodeposited Zinc and Zinc-Alloy Coatings in Marine Environment vol.2, pp.2, 2012, https://doi.org/10.3390/cmd2020010
  4. Roadmap on the protective strategies of zinc anodes in aqueous electrolyte vol.44, pp.None, 2012, https://doi.org/10.1016/j.ensm.2021.10.020