DOI QR코드

DOI QR Code

Kinetics and Reaction Mechanism of Aminolyses of Benzyl 2-Pyridyl Carbonate and t-Butyl 2-Pyridyl Carbonate: Effect of Nonleaving Group on Reactivity and Reaction Mechanism

  • Kang, Ji-Sun (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Lee, Jae-In (Department of Chemistry and Plant Resources Research Institute, Duksung Women's University) ;
  • Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
  • 투고 : 2012.01.10
  • 심사 : 2012.02.04
  • 발행 : 2012.05.20

초록

Second-order rate constants ($k_N$) have been measured spectrophotometrically for the reactions of benzyl 2-pyridyl carbonate $\mathbf{7}$ and $t$-butyl 2-pyridyl carbonate $\mathbf{8}$ with a series of alicyclic secondary amines in $H_2O$ at $25.0^{\circ}C$. Substrate $\mathbf{8}$ is less reactive than $\mathbf{7}$. Steric hindrance exerted by the bulky $t$-Bu group of $\mathbf{8}$ has been suggested to be responsible for the decreased reactivity. The Br${\o}$nsted-type plots for the reactions of $\mathbf{7}$ and $\mathbf{8}$ are linear with ${\beta}_{nuc}=0.49$ and 0.44, respectively, which is typical for reactions reported previously to proceed through a concerted mechanism. Aminolyses of $\mathbf{7}$ and $\mathbf{8}$ were expected to proceed through a zwitterionic tetrahedral intermediate $T^{\pm}$, which would be stabilized through an intramolecular H-bonding interaction. However, the kinetic results suggest that the reactions proceed through a concerted mechanism. The H-bonding interaction in $T^{\pm}$ has been suggested to accelerate the rate of leaving-group expulsion from $T^{\pm}$. Another factor that might accelerate expulsion of the leaving group is the "push" provided by the RO group in $T^{\pm}$ through resonance interactions. Thus, it has been concluded that the enhanced nucleofugality through the H-bonding interaction and the "push" provided by the RO group forces the reactions to proceed through a concerted mechanism.

키워드

참고문헌

  1. Castro, E. A. Pure Appl. Chem. 2009, 81, 685-696. https://doi.org/10.1351/PAC-CON-08-08-11
  2. Castro, E. A. Chem. Rev. 1999, 99, 3505-3524. https://doi.org/10.1021/cr990001d
  3. Jencks, W. P. Chem. Rev. 1985, 85, 511-527. https://doi.org/10.1021/cr00070a001
  4. Jencks, W. P. Chem. Soc. Rev. 1981, 10, 345-375. https://doi.org/10.1039/cs9811000345
  5. Jencks, W. P. Acc. Chem. Res. 1980, 13, 161-169. https://doi.org/10.1021/ar50150a001
  6. Castro, E. A.; Gazitua, M.; Santos, J. G. J. Phys. Org. Chem. 2011, 24, 466-473. https://doi.org/10.1002/poc.1787
  7. Castro, E. A.; Aliaga, M. E.; Cepeda, M.; Santos, J. G. Int. J. Chem. Kinet. 2011, 43, 353-358. https://doi.org/10.1002/kin.20562
  8. Castro, E. A.; Aliaga, M.; Campodonico, P. R.; Cepeda, M.; Contreras. R.; Santos, J. G. J. Org. Chem. 2009, 74, 9173-9179. https://doi.org/10.1021/jo902005y
  9. Castro, E. A.; Ramos, M.; Santos, J. G. J. Org. Chem. 2009, 74, 6374-6377. https://doi.org/10.1021/jo901137f
  10. Castro, E. A.; Aliaga, M.; Santos, J. G. J. Org. Chem. 2005, 70, 2679-2685. https://doi.org/10.1021/jo047742l
  11. Castro, E. A.; Gazitua, M.; Santos, J. G. J. Org. Chem. 2005, 70, 8088-8092. https://doi.org/10.1021/jo051168b
  12. Sung, D. D.; Jang, H. M.; Jung, D. I.; Lee, I. J. Phys. Org. Chem. 2008, 21, 1014-1019. https://doi.org/10.1002/poc.1418
  13. Sung, D. D.; Koo, I. S.; Yang, K.; Lee, I. Chem. Phys. Lett. 2006, 432, 426-430. https://doi.org/10.1016/j.cplett.2006.11.002
  14. Sung, D. D.; Koo, I. S.; Yang, K.; Lee, I. Chem. Phys. Lett. 2006, 426, 280-284. https://doi.org/10.1016/j.cplett.2006.06.015
  15. Oh, H. K.; Oh, J. Y.; Sung, D. D.; Lee, I. J. Org. Chem. 2005, 70, 5624-5629. https://doi.org/10.1021/jo050606b
  16. Oh, H. K.; Jin, Y. C.; Sung, D. D.; Lee, I. Org. Biomol. Chem. 2005, 3, 1240-1244. https://doi.org/10.1039/b500251f
  17. Menger, F. M.; Smith, J. H. J. Am. Chem. Soc. 1972, 94, 3824- 3829. https://doi.org/10.1021/ja00766a027
  18. Maude, A. B.; Williams, A. J. Chem. Soc., Perkin Trans. 2 1997, 179-183.
  19. Maude, A. B.; Williams, A. J. Chem. Soc., Perkin Trans. 2 1995, 691-696.
  20. Menger, F. M.; Brian, J.; Azov, V. A. Angew. Chem. Int. Ed. 2002, 41, 2581-2584. https://doi.org/10.1002/1521-3773(20020715)41:14<2581::AID-ANIE2581>3.0.CO;2-#
  21. Perreux, L.; Loupy, A.; Delmotte, M. Tetrahedron 2003, 59, 2185-2189. https://doi.org/10.1016/S0040-4020(03)00151-0
  22. Fife, T. H.; Chauffe, L. J. Org. Chem. 2000, 65, 3579-3586. https://doi.org/10.1021/jo9906835
  23. Spillane, W. J; Brack, C. J. Chem. Soc., Perkin Trans. 2 1998, 2381-2384.
  24. Llinas, A.; Page, M. I. Org. Biomol. Chem. 2004, 2, 651-654. https://doi.org/10.1039/b313900j
  25. Oh, H. K. Bull. Korean Chem. Soc. 2011, 32, 4095-4098. https://doi.org/10.5012/bkcs.2011.32.11.4095
  26. Oh, H. K. Bull. Korean Chem. Soc. 2011, 32, 1539-1542. https://doi.org/10.5012/bkcs.2011.32.5.1539
  27. Oh, H. K. Bull. Korean Chem. Soc. 2011, 32, 137-140. https://doi.org/10.5012/bkcs.2011.32.1.137
  28. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 8995-8998. https://doi.org/10.1021/jo0264269
  29. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 3874-3877. https://doi.org/10.1021/jo025637a
  30. Um, I. H.; Lee, J. Y.; Ko, S. H.; Bae, S. K. J. Org. Chem. 2006, 71, 5800-5803. https://doi.org/10.1021/jo0606958
  31. Um, I. H.; Kim, K. H.; Park, H. R.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3937-3942. https://doi.org/10.1021/jo049694a
  32. Um, I. H.; Min, J. S.; Ahn, J. A.; Hahn, H. J. J. Org. Chem. 2000, 65, 5659-5663. https://doi.org/10.1021/jo000482x
  33. I. H.; Jeon, S. E.; Seok, J. A. Chem. Eur. J. 2006, 12, 1237-1243. https://doi.org/10.1002/chem.200500647
  34. Um, I. H.; Seok, J. A.; Kim, H. T.; Bae, S. K. J. Org. Chem. 2003, 68, 7742-7746. https://doi.org/10.1021/jo034637n
  35. Um, I. H.; Hwang, S. J.; Baek, M. H.; Park, E. J. J. Org. Chem. 2006, 71, 9191-9197. https://doi.org/10.1021/jo061682x
  36. Um, I. H.; Han, J. Y.; Shin, Y. H. J. Org. Chem. 2009, 74, 3073-3078. https://doi.org/10.1021/jo900219t
  37. Um, I. H.; Akhtar, K.; Shin, Y. H.; Han, J. Y. J. Org. Chem. 2007, 72, 3823-3829. https://doi.org/10.1021/jo070171n
  38. Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715-7720. https://doi.org/10.1021/jo061308x
  39. Um, I. H.; Hong, J. Y.; Seok, J. A. J. Org. Chem. 2005, 70, 1438-1444. https://doi.org/10.1021/jo048227q
  40. Um, I. H.; Chun, S. M.; Chae, O. M.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3166-3172. https://doi.org/10.1021/jo049812u
  41. Um, I. H.; Hong, J. Y.; Kim, J. J.; Chae, O. M.; Bea, S. K. J. Org. Chem. 2003, 68, 5180-5185. https://doi.org/10.1021/jo034190i
  42. Lee, J. P.; Bae, A. R.; Im, L. R.; Um, I. H. Bull. Korean Chem. Soc. 2010, 31, 3588-3592. https://doi.org/10.5012/bkcs.2010.31.12.3588
  43. Bae, A. R.; Um, I. H. Bull. Korean Chem. Soc. 2012, 33, 1547- 1550. https://doi.org/10.5012/bkcs.2012.33.5.1547
  44. Um, I. H.; Kang, J. S.; Kim, C. W.; Lee, J. I. Bull. Korean Chem. Soc. 2012, 33, 519-523. https://doi.org/10.5012/bkcs.2012.33.2.519
  45. Lee, J. I.; Kang, J. S.; Kim, S. I.; Um, I. H. Bull. Korean Chem. Soc. 2010, 31, 2929-2933. https://doi.org/10.5012/bkcs.2010.31.10.2929
  46. Lee, J. I.; Kang, J. S.; Im, L. R.; Um, I. H. Bull. Korean Chem. Soc. 2010, 31, 3543-3548. https://doi.org/10.5012/bkcs.2010.31.12.3543
  47. Lee, J. I. Bull. Korean Chem. Soc. 2010, 31, 749-752. https://doi.org/10.5012/bkcs.2010.31.03.749
  48. Lee, J. I. Bull. Korean Chem. Soc. 2007, 28, 863-866. https://doi.org/10.5012/bkcs.2007.28.5.863
  49. Lee, J. I.; Kim, S. Bull. Korean Chem. Soc. 1989, 10, 611-612.
  50. Kim, S.; Lee, J. I. J. Org. Chem. 1984, 49, 1712-1716. https://doi.org/10.1021/jo00184a009
  51. Kim, S.; Lee, J. I.; Ko, Y. K. Tetrahedron Lett. 1984, 25, 4943-4946. https://doi.org/10.1016/S0040-4039(01)91265-1
  52. Kim, S.; Lee, J. I. J. Org. Chem. 1983, 48, 2608-2610. https://doi.org/10.1021/jo00163a040
  53. Mukaiyama, T.; Araki, M.; Takei, H. J. Am. Chem. Soc. 1973, 95, 4763-4765. https://doi.org/10.1021/ja00795a055
  54. Araki, M.; Sakata, S.; Takei, H.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1974, 47, 1777-1780. https://doi.org/10.1246/bcsj.47.1777
  55. Jensen, J. L.; Jencks, W. P. J. Am. Chem. Soc. 1979, 101, 1476- 1488. https://doi.org/10.1021/ja00500a019
  56. Castro, E. A.; Ureta, C. J. Org. Chem. 1989, 54, 2153- 2159. https://doi.org/10.1021/jo00270a026
  57. Jencks, W. P.; Regenstein, J. In Handbook of Biochemistry, Selected Data for Molecular Biology; Sober, H. A., Ed.; The Chemical Rubber Co.: Cleveland, OH, 1968.
  58. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd ed.; Harper/Collins: New York, 1987; pp 153-157.
  59. Issacs, N. S. Physical Organic Chemistry, 2nd ed.; Longman Scientific and Technical: Singapore, 1995; pp 152-153.
  60. Bell, R. P. The Proton in Chemistry; Methuen: London, 1959; p 159.
  61. Kim, S.; Lee, J. I. Chem. Lett. 1984, 237-238.
  62. Kim, S.; Lee, J. I.; Yi, K. Y. Bull. Chem. Soc. Jpn. 1985, 58, 3570-3575. https://doi.org/10.1246/bcsj.58.3570

피인용 문헌

  1. Aminolysis of Benzyl 2-Pyridyl Thionocarbonate and t-Butyl 2-Pyridyl Thionocarbonate: Effects of Nonleaving Groups on Reactivity and Reaction Mechanism vol.34, pp.4, 2013, https://doi.org/10.5012/bkcs.2013.34.4.1115
  2. A Kinetic Study on Aminolysis of Benzyl 2-Pyridyl Thionocarbonate and t-Butyl 2-Pyridyl Thionocarbonate: Effects of Polarizability and Steric Hindrance on Reactivity and Reaction Mechanism vol.34, pp.8, 2013, https://doi.org/10.5012/bkcs.2013.34.8.2325
  3. Structure-Reactivity Correlations in Nucleophilic Displacement Reactions of Y-Substituted-Phenyl X-Substituted-Cinnamates with Z-Substituted-Phenoxides vol.34, pp.8, 2013, https://doi.org/10.5012/bkcs.2013.34.8.2455
  4. Kinetics and Reaction Mechanism for Aminolysis of Benzyl 4-Pyridyl Carbonate in H2O: Effect of Modification of Nucleofuge from 2-Pyridyloxide to 4-Pyridyloxide on Reactivity and Reaction Me vol.33, pp.7, 2012, https://doi.org/10.5012/bkcs.2012.33.7.2269
  5. A Kinetic Study on Aminolysis of t-Butyl 4-Pyridyl Carbonate and Related Compounds: Effect of Leaving and Nonleaving Groups on Reaction Mechanism vol.33, pp.9, 2012, https://doi.org/10.5012/bkcs.2012.33.9.2971