DOI QR코드

DOI QR Code

Kinetics and Reaction Mechanism of Aminolyses of Benzyl 2-Pyridyl Carbonate and t-Butyl 2-Pyridyl Carbonate in Acetonitrile

  • Bae, Ae-Ri (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
  • Received : 2012.01.10
  • Accepted : 2012.02.04
  • Published : 2012.05.20

Abstract

Second-order rate constants ($k_N$) have been measured spectrophotometrically for the reactions of benzyl 2-pyridyl carbonate $\mathbf{3}$ and $t$-butyl 2-pyridyl carbonate $\mathbf{3}$ with a series of alicyclic secondary amines in MeCN at $25.0{\pm}0.1^{\circ}C$. Substrate $\mathbf{4}$ is much less reactive than $\mathbf{3}$ and the steric hindrance exerted by the bulky $t$-Bu group in $\mathbf{4}$ has been attributed to its decreased reactivity. The Br${\o}$nsted-type plots for the reactions of $\mathbf{3}$ and $\mathbf{4}$ are linear with ${\beta}_{nuc}=0.57$ and 0.45, respectively. Thus, the reactions have been concluded to proceed through a concerted mechanism, although the current reactions were expected to proceed through a stepwise mechanism with a zwitterionic tetrahedral intermediate $T^{\pm}$. It has been proposed that the rate of leaving-group expulsion is accelerated by the intramolecular H-bonding interaction in $T^{\pm}$ and the "push" provided by the RO group through the resonance interaction. Thus, the enhanced nucleofugality forces the reactions to proceed through a concerted mechanism. The reactivity-selectivity principle (RSP) is not applicable to the current reaction systems, since the reaction of the less reactive $\mathbf{4}$ results in a smaller ${\beta}_{nuc}$ than that of the more reactive $\mathbf{3}$. Steric hindrance exerted by the bulky $t$-Bu group in $\mathbf{4}$ has been suggested to be responsible for the failure of the RSP.

Keywords

References

  1. Castro, E. A. Pure Appl. Chem. 2009, 81, 685-696. https://doi.org/10.1351/PAC-CON-08-08-11
  2. Castro, E. A. Chem. Rev. 1999, 99, 3505-3524. https://doi.org/10.1021/cr990001d
  3. Jencks, W. P. Chem. Rev. 1985, 85, 511-527. https://doi.org/10.1021/cr00070a001
  4. Jencks, W. P. Chem. Soc. Rev. 1981, 10, 345-375. https://doi.org/10.1039/cs9811000345
  5. Jencks, W. P. Acc. Chem. Res. 1980, 13, 161-169. https://doi.org/10.1021/ar50150a001
  6. Castro, E. A.; Gazitua, M.; Santos, J. G. J. Phys. Org. Chem. 2011, 24, 466-473. https://doi.org/10.1002/poc.1787
  7. Castro, E. A.; Aliaga, M. E.; Cepeda, M.; Santos, J. G. Int. J. Chem. Kinet. 2011, 43, 353-358. https://doi.org/10.1002/kin.20562
  8. Castro, E. A.; Aliaga, M.; Campodonico, P. R.; Cepeda, M.; Contreras. R.; Santos, J. G. J. Org. Chem. 2009, 74, 9173-9179. https://doi.org/10.1021/jo902005y
  9. Castro, E. A.; Ramos, M.; Santos, J. G. J. Org. Chem. 2009, 74, 6374-6377. https://doi.org/10.1021/jo901137f
  10. Castro, E. A.; Aliaga, M.; Santos, J. G. J. Org. Chem. 2005, 70, 2679-2685. https://doi.org/10.1021/jo047742l
  11. Castro, E. A.; Gazitua, M.; Santos, J. G. J. Org. Chem. 2005, 70, 8088-8092. https://doi.org/10.1021/jo051168b
  12. Sung, D. D.; Jang, H. M.; Jung, D. I.; Lee, I. J. Phys. Org. Chem. 2008, 21, 1014-1019. https://doi.org/10.1002/poc.1418
  13. Sung, D. D.; Koo, I. S.; Yang, K.; Lee, I. Chem. Phys. Lett. 2006, 432, 426-430. https://doi.org/10.1016/j.cplett.2006.11.002
  14. Sung, D. D.; Koo, I. S.; Yang, K.; Lee, I. Chem. Phys. Lett. 2006, 426, 280-284. https://doi.org/10.1016/j.cplett.2006.06.015
  15. Oh, H. K. Bull. Korean Chem. Soc. 2011, 32, 4095-4098. https://doi.org/10.5012/bkcs.2011.32.11.4095
  16. Oh, H. K. Bull. Korean Chem. Soc. 2011, 32, 1539-1542. https://doi.org/10.5012/bkcs.2011.32.5.1539
  17. Oh, H. K. Bull. Korean Chem. Soc. 2011, 32, 137-140. https://doi.org/10.5012/bkcs.2011.32.1.137
  18. Menger, F. M.; Smith, J. H. J. Am. Chem. Soc. 1972, 94, 3824- 3829. https://doi.org/10.1021/ja00766a027
  19. Maude, A. B.; Williams, A. J. Chem. Soc., Perkin Trans. 2 1997, 179-183.
  20. Maude, A. B.; Williams, A. J. Chem. Soc., Perkin Trans. 2 1995, 691-696.
  21. Menger, F. M.; Brian, J.; Azov, V. A. Angew. Chem. Int. Ed. 2002, 41, 2581-2584. https://doi.org/10.1002/1521-3773(20020715)41:14<2581::AID-ANIE2581>3.0.CO;2-#
  22. Perreux, L.; Loupy, A.; Delmotte, M. Tetrahedron 2003, 59, 2185-2189. https://doi.org/10.1016/S0040-4020(03)00151-0
  23. Fife, T. H.; Chauffe, L. J. Org. Chem. 2000, 65, 3579-3586. https://doi.org/10.1021/jo9906835
  24. Spillane, W. J.; Brack, C. J. Chem. Soc., Perkin Trans. 2 1998, 2381-2384.
  25. Llinas, A.; Page, M. I. Org. Biomol. Chem. 2004, 2, 651-654. https://doi.org/10.1039/b313900j
  26. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6970- 6980. https://doi.org/10.1021/ja00463a033
  27. Jensen, J. L.; Jencks, W. P. J. Am. Chem. Soc. 1979, 101, 1476-1488. https://doi.org/10.1021/ja00500a019
  28. Castro E. A.; Ureta, C. J. Org. Chem. 1989, 54, 2153-2159. https://doi.org/10.1021/jo00270a026
  29. Castro, E. A.; Valdivia, J. L. J. Org. Chem. 1986, 51, 1668-1672. https://doi.org/10.1021/jo00360a007
  30. Castro, E. A.; Santander, C. L. J. Org. Chem. 1985, 50, 3595- 3600. https://doi.org/10.1021/jo00219a029
  31. Castro, E. A.; Steinfort, G. B. J. Chem. Soc., Perkin Trans. 2 1983, 453-457.
  32. Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Org. Chem. 2005, 70, 7788-7791. https://doi.org/10.1021/jo051052f
  33. Um, I. H.; Hong, J. Y.; Seok, J. A. J. Org. Chem. 2005, 70, 1438-1444. https://doi.org/10.1021/jo048227q
  34. Um, I. H.; Chun, S. M.; Chae, O. M.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3166-3172. https://doi.org/10.1021/jo049812u
  35. Um, I. H.; Hong, J. Y.; Kim, J. J.; Chae, O. M.; Bea, S. K. J. Org. Chem. 2003, 68, 5180-5185. https://doi.org/10.1021/jo034190i
  36. Um, I. H.; Im, L. R.; Kim, E. H.; Shin, J. H. Org. Biomol. Chem. 2010, 8, 3801-3806. https://doi.org/10.1039/c0ob00031k
  37. Um, I. H.; Kim, E. H.; Im, L. R.; Mishima, M. Bull. Korean Chem. Soc. 2010, 31, 2593-2597. https://doi.org/10.5012/bkcs.2010.31.9.2593
  38. Um, I. H.; Seok, J. A.; Kim, H. T.; Bae, S. K. J. Org. Chem. 2003, 68, 7742-7746. https://doi.org/10.1021/jo034637n
  39. Um, I. H.; Hwang, S. J.; Baek, M. H.; Park, E. J. J. Org. Chem. 2006, 71, 9191-9197. https://doi.org/10.1021/jo061682x
  40. Um, I. H.; Lee, J. Y.; Ko, S. H.; Bae, S. K. J. Org. Chem. 2006, 71, 5800-5803. https://doi.org/10.1021/jo0606958
  41. Um, I. H.; Kim, K. H.; Park, H. R.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3937-3942. https://doi.org/10.1021/jo049694a
  42. Um, I. H.; Min, J. S.; Ahn, J. A.; Hahn, H. J. J. Org. Chem. 2000, 65, 5659-5663. https://doi.org/10.1021/jo000482x
  43. Um, I. H.; Jeon, S. E.; Seok, J. A. Chem. Eur. J. 2006, 12, 1237- 1243. https://doi.org/10.1002/chem.200500647
  44. Um, I. H.; Bae, A. R. J. Org. Chem. 2011, 76, 7510-7515. https://doi.org/10.1021/jo201387h
  45. Um, I. H.; Kang, J. S.; Kim, C. W.; Lee, J. I. Bull. Korean Chem. Soc. 2012, 33, 519-523. https://doi.org/10.5012/bkcs.2012.33.2.519
  46. Lee, J. I.; Kang, J. S.; Im, L. R.; Um, I. H. Bull. Korean Chem. Soc. 2010, 31, 3543-3548. https://doi.org/10.5012/bkcs.2010.31.12.3543
  47. Lee, J. I.; Kang, J. S.; Kim, S. I.; Um, I. H. Bull. Korean Chem. Soc. 2010, 31, 2929-2933. https://doi.org/10.5012/bkcs.2010.31.10.2929
  48. Lee, J. I. Bull. Korean Chem. Soc. 2010, 31, 749-752. https://doi.org/10.5012/bkcs.2010.31.03.749
  49. Lee, J. I. Bull. Korean Chem. Soc. 2007, 28, 863-866. https://doi.org/10.5012/bkcs.2007.28.5.863
  50. Kim, S.; Lee, J. I. J. Org. Chem. 1984, 49, 1712-1716. https://doi.org/10.1021/jo00184a009
  51. Kim, S.; Lee, J. I.; Ko, Y. K. Tetrahedron Lett. 1984, 25, 4943-4946. https://doi.org/10.1016/S0040-4039(01)91265-1
  52. Kim, S.; Lee, J. I. J. Org. Chem. 1983, 48, 2608-1716. https://doi.org/10.1021/jo00163a040
  53. Mukaiyama, T.; Araki, M.; Takei, H. J. Am. Chem. Soc. 1973, 95, 4763-4765. https://doi.org/10.1021/ja00795a055
  54. Araki, M.; Sakata, S.; Takei, H.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1974, 47, 1777-1780. https://doi.org/10.1246/bcsj.47.1777
  55. Spillane, W. J; McGrath, P.; Brack, C.; O'Byrne, A. B. J. Org. Chem. 2001, 66, 6313-6316. https://doi.org/10.1021/jo015691b
  56. Kim, S. I.; Baek, H. W.; Um, I. H. Bull. Korean Chem. Soc. 2009, 30, 2909-2912. https://doi.org/10.5012/bkcs.2009.30.12.2909
  57. Lowry T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd ed.; Harper/Collins: New York, 1987; pp 153-157.
  58. Issacs, N. S. Physical Organic Chemistry, 2nd ed.; Longman Scientific and Technical: Singapore, 1995; pp 152-153.
  59. Bell, R. P. The Proton in Chemistry; Methuen: London, 1959; p 159.
  60. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd ed.; Harper/Collins: New York, 1987; p 148.
  61. Hammett, L. P. J. Am. Chem. Soc. 1937, 59, 96-103. https://doi.org/10.1021/ja01280a022
  62. Ruasse, M. F.; Dubois, J. E. J. Am. Chem. Soc. 1984, 106, 3230- 3234. https://doi.org/10.1021/ja00323a028

Cited by

  1. Kinetics and Reaction Mechanism of Aminolyses of Benzyl 2-Pyridyl Carbonate and t-Butyl 2-Pyridyl Carbonate: Effect of Nonleaving Group on Reactivity and Reaction Mechanism vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1551
  2. A Kinetic Study on Aminolysis of Benzyl 2-Pyridyl Thionocarbonate and t-Butyl 2-Pyridyl Thionocarbonate: Effects of Polarizability and Steric Hindrance on Reactivity and Reaction Mechanism vol.34, pp.8, 2013, https://doi.org/10.5012/bkcs.2013.34.8.2325
  3. Structure-Reactivity Correlations in Nucleophilic Displacement Reactions of Y-Substituted-Phenyl X-Substituted-Cinnamates with Z-Substituted-Phenoxides vol.34, pp.8, 2013, https://doi.org/10.5012/bkcs.2013.34.8.2455
  4. Kinetics and Reaction Mechanism for Aminolysis of Benzyl 4-Pyridyl Carbonate in H2O: Effect of Modification of Nucleofuge from 2-Pyridyloxide to 4-Pyridyloxide on Reactivity and Reaction Me vol.33, pp.7, 2012, https://doi.org/10.5012/bkcs.2012.33.7.2269
  5. Kinetic Study on Nucleophilic Substitution Reactions of 4-Nitrophenyl X-Substituted-2-Methylbenzoates with Cyclic Secondary Amines in Acetonitrile: Reaction Mechanism and Failure of Reactivity-Selecti vol.35, pp.1, 2014, https://doi.org/10.5012/bkcs.2014.35.1.93
  6. Kinetic Study on Aminolysis of 4-Nitrophenyl 2-Pyridyl Carbonate in Acetonitrile: Kinetic Evidence for a Stepwise Mechanism with Two Intermediates vol.35, pp.2, 2012, https://doi.org/10.5012/bkcs.2014.35.2.638