DOI QR코드

DOI QR Code

Anion Effects on Crystal Structures of CdII Complexes Containing 2,2'-Bipyridine: Photoluminescence and Catalytic Reactivity

  • Park, Hyun-Min (Department of Fine Chemistry, Seoul National University of Science & Technology) ;
  • Hwang, In-Hong (Department of Fine Chemistry, Seoul National University of Science & Technology) ;
  • Bae, Jeong-Mi (Department of Fine Chemistry, Seoul National University of Science & Technology) ;
  • Jo, Young-Dan (Department of Fine Chemistry, Seoul National University of Science & Technology) ;
  • Kim, Cheal (Department of Fine Chemistry, Seoul National University of Science & Technology) ;
  • Kim, Ha-Yeong (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Kim, Young-Mee (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Kim, Sung-Jin (Department of Chemistry and Nano Science, Ewha Womans University)
  • Received : 2012.01.14
  • Accepted : 2012.02.02
  • Published : 2012.05.20

Abstract

Anion effects on structures of $Cd^{II}$ complexes containing 2,2'-bipyridine (2,2'-bpy) ligands have been studied, and compared with $Zn^{II}$-(2,2'-bpy) complexes. For each anion, different structures have been obtained in both $Zn^{II}$-(2,2'-bpy) and $Cd^{II}$-(2,2'-bpy). Polymeric structures of $Cd^{II}$-2,2'-bpy complexes can be produced by hydrogen bonding interactions as shown in $Zn^{II}$-2,2'-bpy complexes. In addition, the bigger size of a $Cd^{II}$ ion gives higher coordination numbers forming variety of structures, and it makes that chlorides can act as bridging ligands to form a one-dimensional structure. The compound $\mathbf{5}$ catalyzed efficiently the transesterification of a variety of esters with methanol, while the rest of the compounds have displayed very slow conversions. In addition, the emission bands of complexes $\mathbf{1}$, $\mathbf{2}$, $\mathbf{4}$, and $\mathbf{6}$ are blue-shifted compared to the corresponding ligand 2,2'-bpy, whereas $\mathbf{3}$ and $\mathbf{5}$ showed the similar emission observed for the ligand.

Keywords

References

  1. Batten, S. R.; Robson, R. Angew. Chem., Int. Ed. 1998, 37, 1460. https://doi.org/10.1002/(SICI)1521-3773(19980619)37:11<1460::AID-ANIE1460>3.0.CO;2-Z
  2. Eddaoudi, M.; Moler, D. B.; Li, H.; Chen, B.; Reineke, T. M.; O'Keeffe, M.; Yaghi, O. M. Acc. Chem. Res. 2001, 34, 319. https://doi.org/10.1021/ar000034b
  3. Kim, K. Chem. Soc. Rev. 2002, 31, 96. https://doi.org/10.1039/a900939f
  4. Janiak, C. J. Chem. Soc., Dalton Trans. 2003, 2781.
  5. Noro, S.; Kitaura, R.; Komdo, M.; Kitagawa, S.; Ishii, T.; Matsuzaka, H.; Yamashita, M. J. Am. Chem. Soc. 2002, 124, 2568. https://doi.org/10.1021/ja0113192
  6. Chun, H.; Jung, H. Inorg. Chem. 2009, 48, 417. https://doi.org/10.1021/ic801906e
  7. Kuc, A.; Heine, T.; Seifert, G.; Duarte, H. A. Chem. Eur. J. 2008, 14, 6597. https://doi.org/10.1002/chem.200800878
  8. Lee, S. Y.; Park, S.; Kim, H. J.; Jung, J. H.; Lee, S. S. Inorg. Chem. 2008, 47, 1913. https://doi.org/10.1021/ic702496e
  9. Shyu, E.; Supkowski, R. M.; LaDuca, R. L. Inorg. Chem. 2009, 48, 2723. https://doi.org/10.1021/ic900241q
  10. Takizawa, S.; Somei, H.; Jayaprakash, D.; Sasai, H. Angew. Chem., Int. Ed. 2003, 42, 5711. https://doi.org/10.1002/anie.200352354
  11. Hong, S. J.; Ryu, J. Y.; Lee, J. Y.; Kim, C.; Kim, S.-J.; Kim, Y. J. Chem. Soc., Dalton Trans. 2004, 2697.
  12. Hasegawa, S.; Horike, S.; Matsuda, R.; Furukawa, S.; Mochizuki, K.; Kinoshita, Y.; Kitagawa, S. J. Am. Chem. Soc. 2007, 129, 2607. https://doi.org/10.1021/ja067374y
  13. Dybtsev, D. N.; Nuzhdin, A. L.; Chun, H.; Bryliakov, K. P.; Talsi, E. P.; Fedin, V. P.; Kim, K. Angew. Chem., Int. Ed. 2006, 45, 916. https://doi.org/10.1002/anie.200503023
  14. Mines, G. A.; Tzeng, B.-C.; Stevenson, K. J.; Li, J.; Hupp, J. T. Angew. Chem., Int. Ed. 2002, 41, 154. https://doi.org/10.1002/1521-3773(20020104)41:1<154::AID-ANIE154>3.0.CO;2-F
  15. Lan, A.; Li, K.; Wu, H.; Olson, D. H.; Emge, T. J.; Ki, W.; Hong, M.; Li, J. Angew. Chem., Int. Ed. 2009, 48, 2334. https://doi.org/10.1002/anie.200804853
  16. Qiu, L.-G.; Li, Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X. Chem. Commun. 2008, 3642.
  17. Lin, Z.; Tong, M.-L. Coord. Chem. Rev. 2010, 255, 421.
  18. Song, Y. J.; Kwak, H.; Lee, Y. M.; Kim, S. H.; Lee, S. H.; Park, B. K.; Jun, J. Y.; Yu, S. M.; Kim, C.; Kim, S.-J.; Kim, Y. Polyhedron 2009, 28, 1241. https://doi.org/10.1016/j.poly.2009.02.014
  19. Gadzikwa, T.; Zeng, B.-S.; Hupp, J. T.; Nguyen, S. T. Chem. Commun. 2008, 3672.
  20. Withersby, M. A.; Blake, A. J.; Champness, N. R.; Cooke, P. A.; Hubberstey, P.; Li, W.-S.; Schroder, M. Inorg. Chem. 1999, 38, 2259. https://doi.org/10.1021/ic980898h
  21. Yang, J.; Ma, J.-F.; Liu, Y.-Y.; Ma, J.-C.; Batten, S. R. Cryst. Growth Des. 2009, 9, 1894. https://doi.org/10.1021/cg801085d
  22. Lee, Y. J.; Kim, E. Y.; Kim, S. H.; Jang, S. P.; Lee, T. G.; Kim, C.; Kim, S.-J.; Kim, Y. New J. Chem. 2011, 35, 833. https://doi.org/10.1039/c0nj00869a
  23. Roesky, H. W.; Andruh, M. Coord. Chem. Rev. 2003, 236, 91. https://doi.org/10.1016/S0010-8545(02)00218-7
  24. Luan, X. J.; Wang, Y.-Y.; Li, D.-S.; Liu, P.; Hu, H.-M.; Shi, Q.-Z.; Peng, S.-M. Angew. Chem., Int. Ed. 2005, 44, 3864. https://doi.org/10.1002/anie.200500744
  25. Ding, B.-B.; Weng, Y.-Q.; Mao, Z.-W.; Lam, C.-K.; Chen, X.-M.; Ye, B.-H. Inorg. Chem. 2005, 44, 8836. https://doi.org/10.1021/ic051195k
  26. Angeloni, A.; Crawford, P. C.; Orpen, A. G.; Podesta, T. J.; Shore, B. J. Chem. Eur. J. 2004, 10, 3783. https://doi.org/10.1002/chem.200400165
  27. Balamurugan, V.; Hundal, M. S.; Mukherjee, R. Chem. Eur. J. 2004, 10, 1683. https://doi.org/10.1002/chem.200305701
  28. Wang, Y.; Yu, J.; Li, Y.; Shi, Z.; Xu, R. Chem. Eur. J. 2003, 9, 5048. https://doi.org/10.1002/chem.200305040
  29. Braga, D.; Grepioni, F.; Desiraju, G. R. Chem. Rev. 1998, 98, 1375. https://doi.org/10.1021/cr960091b
  30. Janiak, C.; Scharmann, T. G. Polyhedron 2003, 22, 1123. https://doi.org/10.1016/S0277-5387(03)00098-6
  31. Brammer, L.; Bruton, E. A.; Sherwood, P. Cryst. Growth Des. 2001, 1, 277. https://doi.org/10.1021/cg015522k
  32. Desiraju, G. R. Acc. Chem. Res. 2002, 35, 565. https://doi.org/10.1021/ar010054t
  33. Blake, A. J.; Brooks, N. R.; Champness, N. R.; Cooke, P. A.; Deveson, A. M.; Fenske,D.; Hubberstey, P.; Schroder, M. J. J. Chem. Soc., Dalton Trans. 1999, 2103.
  34. Huang, Y.-Q.; Zhao, X.-Q.; Shi, W.; Liu, W.-Y.; Chen, Z.-L.; Cheng, P.; Liao, D.-Z.; Yan, S.-P. Cryst. Growth Des. 2008, 8, 3652. https://doi.org/10.1021/cg8002564
  35. Kwak, H.; Lee, S. H.; Kim, S. H.; Lee, Y. M.; Lee, E. Y.; Park, B. K.; Kim, E. Y.; Kim, C.; Kim, S.-J.; Kim, Y. Eur. J. Inorg. Chem. 2008, 408.
  36. Mondal, R.; Basu, T.; Sadhukhan, D.; Chattopadhyay, T.; Bhunia, M. Cryst. Growth Des. 2009, 9, 1095. https://doi.org/10.1021/cg800923g
  37. Eom, G. H.; Park, H. M.; Hyun, M. Y.; Jang, S. P.; Kim, C.; Lee, J. H.; Lee, S. J.; Kim, S.-J.; Kim, Y. Polyhedron 2011, 30, 1555. https://doi.org/10.1016/j.poly.2011.03.040
  38. Dong, Y.-B.; Jiang, Y.-Y.; Li, J.; Ma, J.-P.; Liu, F.-L.; Tang, B.; Huang, R.-Q.; Batten, S. R. J. Am. Chem. Soc. 2007, 129, 4520. https://doi.org/10.1021/ja0701917
  39. Ma, L.-F.; Wang, L.-Y.; Lu, D.-H.; Batten, S. R.; Wang, J.-G. Cryst. Growth Des. 2009, 9, 1741. https://doi.org/10.1021/cg800732e
  40. Mahata, P.; Prabu, M.; Natarajan, S. Inorg. Chem. 2008, 47, 8451. https://doi.org/10.1021/ic800621q
  41. Chesman, A. S. R.; Turner, D. R.; Price, D. J.; Moubaraki, B.; Murray, K. S.; Deacon, G. B.; Batten, S. R. Chem. Commun. 2007, 3541.
  42. Toh, N. L.; Nagarathinam, M.; Vittal, J. J. Angew. Chem., Int. Ed. 2005, 44, 2237. https://doi.org/10.1002/anie.200462673
  43. Carballo, R.; Covelo, B.; Fallah, M. S. E.; Ribas, J.; Vazquez- Lopez, E. M. Cryst. Growth Des. 2007, 7, 1069. https://doi.org/10.1021/cg060616l
  44. Marinho, M. V.; Yoshida, M. I.; Guedes, K. J.; Krambrock, K.; Bortoluzzi, A. J.; Horner, M.; Machado, F. C.; Teles, W. M. Inorg. Chem. 2004, 43, 1539. https://doi.org/10.1021/ic035251y
  45. Kwak, H.; Lee, S. H.; Kim, S. H.; Lee, Y. M.; Park, B. K.; Lee, Y. J.; Jun, J. Y.; Kim, C.; Kim, S.-J.; Kim, Y. Polyhedron 2009, 28, 553. https://doi.org/10.1016/j.poly.2008.11.048
  46. Chen, W.-X.; Wu, S.-T.; Long, L.-S.; Huang, R.-B.; Zheng, L.-S. Cryst. Growth Des. 2007, 7, 1171. https://doi.org/10.1021/cg070119k
  47. Fang, R.-Q.; Zhang, X.-M. Inorg. Chem. 2006, 45, 4801. https://doi.org/10.1021/ic052099m
  48. Go, Y. B.; Wang, X.; Anokhina, E. V.; Jacobson, A. J. Inorg. Chem. 2005, 44, 8265. https://doi.org/10.1021/ic050644d
  49. Fang, Q.; Zhu, G.; Xue, M.; Wang, Z.; Sun, J.; Qiu, S. Cryst. Growth Des. 2008, 8, 319. https://doi.org/10.1021/cg070604f
  50. Park, B. K.; Eom, G. H.; Kim, S. H.; Kwak, H.; Yoo, S. M.; Lee, Y. J.; Kim, C.; Kim, S.-J.; Kim, Y. Polyhedron 2010, 29, 773. https://doi.org/10.1016/j.poly.2009.10.024
  51. Lu, J.; Wang, N.; Liu, H.-T. J. Coord. Chem. 2009, 62, 1980. https://doi.org/10.1080/00958970902744974
  52. Zhou, Y.-F.; Xu, Y.; Yuan, D.-Q.; Hong, M.-C. Acta Cryst. Sect. E 2003, 59, m821. https://doi.org/10.1107/S1600536803018622
  53. Zhu, J.-W.; Yang, E.; Song, X.-C.; Lin, Y.-D. Acta Cryst. Sect. E 2007, 63, m1044. https://doi.org/10.1107/S1600536807011063
  54. Zhang, B.-S. Acta Cryst. Sect. E 2009, 65, m1413. https://doi.org/10.1107/S1600536809042597
  55. Guo, H.-X.; Lin, H.-B.; Wang, Q.-H. Acta Cryst. Sect. E 2006, 62, 1239. https://doi.org/10.1107/S1600536806015893
  56. Turner, R. W.; Rodesiler, P. F.; Amma, E. L. Inorg. Chim. Acta 1982, 66, L13. https://doi.org/10.1016/S0020-1693(00)85760-6
  57. Rodesiler, P. F.; Turner, R. W.; Charles, N. G.; Griffith, E. A. H.; Amma, E. L. Inorg. Chem. 1984, 23, 999. https://doi.org/10.1021/ic00176a003
  58. Zhu, L.-G.; Hu, M.-L. Acta Cryst. Sect. E 2006, 62, m653. https://doi.org/10.1107/S1600536806005502
  59. Zhang, W.; Jiang, Z.; Lu, L. Acta Cryst. Sect. E 2009, 65, m7. https://doi.org/10.1107/S1600536808036593
  60. Ranjbar, Z. R.; Morsali, A.; Zhu, L.-G. J. Coord. Chem. 2007, 60, 667. https://doi.org/10.1080/00958970600899492
  61. Kim, Y.; Park, B. K.; Eom, G. H.; Kim, S. H.; Park, H. M.; Choi, Y. S.; Jang, H. G.; Kim, C. Inorg. Chim. Acta 2011, 366, 337. https://doi.org/10.1016/j.ica.2010.11.029
  62. Lee, Y. M.; Hong, S. J.; Kim, H. J.; Lee, S. H.; Kwak, H.; Kim, C.; Kim, S.-J.; Kim, Y. Inorg. Chem. Commun. 2007, 10, 287. https://doi.org/10.1016/j.inoche.2006.11.001
  63. Kim, S. H.; Park, B. K.; Song, Y. J.; Yu, S. M.; Koo, H. G.; Kim, E. Y.; Poong, J. I.; Lee, J. H.; Kim, C.; Kim, S.-J.; Kim, Y. Inorg. Chim. Acta 2009, 362, 4119. https://doi.org/10.1016/j.ica.2009.06.008
  64. Park, B. K.; Lee, S. H.; Lee, E. Y.; Kwak, H.; Lee, Y. M.; Lee, Y. J.; Jun, J. Y.; Kim, C.; Kim, S.-J.; Kim, Y. J. Mol. Str. 2008, 890, 123. https://doi.org/10.1016/j.molstruc.2008.03.052
  65. Chen, X. L.; Zhang, B.; Hu, H.-M.; Fu, F.; Wu, X.-L.; Qin, T.; Yang, M.-L.; Xue, G.-L.; Wang, J.-W. Cryst. Growth Des. 2008, 8, 3706. https://doi.org/10.1021/cg8003257
  66. Wang, Y.-T.; Yan, S.-C.; Tang, G.-M.; Zhao, C.; Li, T.-D.; Cui, Y.- Z. Inorg. Chim. Acta 2011, 376, 492. https://doi.org/10.1016/j.ica.2011.07.011

Cited by

  1. Fascinating chemistry or frustrating unpredictability: observations in crystal engineering of metal–organic frameworks vol.15, pp.45, 2013, https://doi.org/10.1039/c3ce41241e
  2. Revealing the structural chemistry of the group 12 halide coordination compounds with 2,2′-bipyridine and 1,10-phenanthroline vol.70, pp.4, 2017, https://doi.org/10.1080/00958972.2016.1271982
  3. Synthesis, characterization, photoluminescent properties and supramolecular aggregations in diimine chelated cadmium dihalides vol.67, pp.1, 2012, https://doi.org/10.1080/00958972.2013.864393
  4. Synthesis, structure and some properties of a manganese(II) benzoate containing diimine vol.1102, pp.None, 2015, https://doi.org/10.1016/j.molstruc.2015.08.049
  5. The Early Years of 2,2’-Bipyridine-A Ligand in Its Own Lifetime vol.24, pp.21, 2012, https://doi.org/10.3390/molecules24213951
  6. Influencing the Dimensionality of Ni/Co‐Bipyrazole‐Based Coordination Frameworks through Anions and Thermal Activation vol.2022, pp.1, 2012, https://doi.org/10.1002/ejic.202100853