DOI QR코드

DOI QR Code

Inclusion Extraction of Alkali Metals by Emulsion Liquid Membranes and Nano-baskets of p-tert-Calix[4]arene Bearing Di-[N-(X)sulfonyl Carboxamide] and Di-(1-propoxy) in ortho-cone Conformation

  • Mokhtari, Bahram (Department of Chemical Engineering, Shahreza Branch, Islamic Azad University) ;
  • Pourabdollah, Kobra (Department of Chemical Engineering, Shahreza Branch, Islamic Azad University)
  • Received : 2011.12.20
  • Accepted : 2011.01.01
  • Published : 2012.05.20

Abstract

Nano-assisted inclusion separation of alkali metals from basic solutions was reported by inclusion-facilitated emulsion liquid membrane process. The novelty of this study is application of nano-baskets of calixarene in the selective and efficient separation of alkali metals as both the carrier and the surfactant. For this aim, four derivatives of $p-tert-calix$[4]arene bearing different sulfonamide moieties were synthesized and their inclusion-extraction parameters were optimized including the calixarene scaffold $\mathbf{3}$ (4 wt %) as the carrier/demulsifier, the commercial kerosene as diluent in membrane, sulphonic acid (0.2 M) and ammonium carbonate (0.4 M) as the strip and the feed phases, the phase and the treat ratios of 0.8 and 0.3, mixing speed (300 rpm), and initial solute concentration (100 mg/L). The selectivity of membrane over more than ten interfering cations was examined and the results reveled that under the optimized operating condition, the degree of inclusion-extraction of alkali metals was as high as 98-99%.

Keywords

References

  1. Li, N.N. US Patent 3410794, 1968.
  2. Kumbasar, R. A.; Sahin, I. J. Membr. Sci. 2008, 164, 712.
  3. Chakraborty, M.; Bhattacharya, C.; Datta, S. Colloids Surf. A 2003, 224, 65. https://doi.org/10.1016/S0927-7757(03)00260-7
  4. Ortiz, M. F.; San Roman, S. M.; Corvalan, A.; Eliceche, M. Ind. Eng. Chem. Res. 2003, 42, 5891. https://doi.org/10.1021/ie030212f
  5. Correia, P. F.; de Carvalho, J. M. R. J. Membr. Sci. 2003, 225, 41. https://doi.org/10.1016/S0376-7388(03)00319-3
  6. Park, Y.; Skelland, A. H. P.; Forney, L. J.; Kim, J. H. Water Res. 2006, 40, 1763. https://doi.org/10.1016/j.watres.2006.03.005
  7. Frankenfeld, J. W.; Chan, R. P.; Li, N. N. Sep. Sci. Technol. 1981, 16, 385. https://doi.org/10.1080/01496398108068528
  8. Hou, W.; Papadopoulos, K. D. Chem. Eng. Sci. 1996, 51, 5043. https://doi.org/10.1016/0009-2509(96)00311-9
  9. Zihao, W.; Yuanli, J.; Jufu, F. J. Membr. Sci. 1996, 109, 25. https://doi.org/10.1016/0376-7388(95)00156-5
  10. Bandyopadhyaya, R.; Bhowal, A.; Datta, S.; Sanyal, S. K. Chem. Eng. Sci. 1998, 53, 2799. https://doi.org/10.1016/S0009-2509(98)00110-9
  11. Xuan-cai, D.; Fu-quan, X. J. Membr. Sci. 1991, 59, 183. https://doi.org/10.1016/S0376-7388(00)81182-5
  12. Li, N. N.; Borwankar, R. P.; Chan, C. C.; Wassan, D. T.; Kurzeja, R. M.; Gu, Z. M. AIChE J. 1988, 34, 753. https://doi.org/10.1002/aic.690340506
  13. Florence, A. T.; Whitehill, D. J. Colloid Interface Sci. 1981, 79, 243. https://doi.org/10.1016/0021-9797(81)90066-7
  14. Wan, Y.; Zhang, X. J. Membr. Sci. 2002, 196, 185. https://doi.org/10.1016/S0376-7388(01)00554-3
  15. Ikeda, H.; Matsuhisa, A.; Ueno, A. Chem. Eur. J. 2003, 9, 4907. https://doi.org/10.1002/chem.200304816
  16. Yordanov, B.; Boyadzhiev, L. J. Membr. Sci. 2007, 305, 313. https://doi.org/10.1016/j.memsci.2007.08.016
  17. Demirci, J. C.; Cotton, A. L.; Lometto, K. R.; Harkins, P. N.; Hinz, N. Biotechnol. Bioeng. 2003, 83, 749. https://doi.org/10.1002/bit.10722
  18. Kaghazchia, T.; Kargaria, A.; Yegania, R.; Zare, A. Desalination 2006, 190, 161. https://doi.org/10.1016/j.desal.2005.06.031
  19. Mohagheghi, E.; Alemzadeh, I.; Vossoughi, M. Sep. Sci. Technol. 2008, 43, 3075. https://doi.org/10.1080/01496390802219612
  20. Oshima, T.; Inoue, K.; Furusaki, S.; Goto, M. J. Membr. Sci. 2003, 217, 87. https://doi.org/10.1016/S0376-7388(03)00078-4
  21. Bayraktar, E. Process Biochem. 2001, 37, 169. https://doi.org/10.1016/S0032-9592(01)00192-3
  22. Vasudevan, M.; Wiencek, J. M. Ind. Eng. Chem. Res. 1996, 35, 1085. https://doi.org/10.1021/ie950328e
  23. Habaki, H.; Egashira, R.; Stevens, G. W.; Kawasaki, J. J. Membr. Sci. 2002, 208, 89. https://doi.org/10.1016/S0376-7388(02)00179-5
  24. Lee, S.C. J. Ind. Eng. Chem. 2008, 14, 207. https://doi.org/10.1016/j.jiec.2007.09.005
  25. Mokhtari, B.; Pourabdollah, K. J. Coord. Chem. 2011, 64, 3081. https://doi.org/10.1080/00958972.2011.613462
  26. Mokhtari, B.; Pourabdollah, K. J. Coord. Chem. 2011, 64, 4029. https://doi.org/10.1080/00958972.2011.635790
  27. Mokhtari, B.; Pourabdollah, K.; Dalali, N. Chromatographia 2011, 73, 829. https://doi.org/10.1007/s10337-011-1954-1
  28. Mokhtari, B.; Pourabdollah, K. J. Incl. Phenom. Macrocycl. Chem. 2012. DOI:10.1007/s10847-011-0099-z
  29. Mokhtari, B.; Pourabdollah, K.; Dalali, N. J. Incl. Phenom. Macrocycl. Chem. 2011, 69(1-2), 1. https://doi.org/10.1007/s10847-010-9848-7
  30. Baeyer, A. Chem. Ber. 1872, 5, 280. https://doi.org/10.1002/cber.18720050186
  31. Zinke, A.; Ziegler, E. Chem. Ber. 1944, 77, 264. https://doi.org/10.1002/cber.19440770322
  32. Gutsche, C. D.; Muthukrishnan, R. J. Org. Chem. 1978, 43, 4905. https://doi.org/10.1021/jo00419a052
  33. Mokhtari, B.; Pourabdollah, K. Bull. Korean Chem. Soc. 2011, 32, 3855. https://doi.org/10.5012/bkcs.2011.32.11.3855
  34. Mokhtari, B.; Pourabdollah, K. Supramol. Chem. 2012, 23, 696.
  35. Mokhtari, B.; Pourabdollah, K. J. Therm. Anal. Calorim. 2012. DOI:10.1007/s10973-011-2014-7
  36. Mokhtari, B.; Pourabdollah, K. J. Coord. Chem. 2011, 64, 4079. https://doi.org/10.1080/00958972.2011.636040
  37. Mokhtari, B.; Pourabdollah, K. J. Incl. Phenom. Macrocycl. Chem. 2012. DOI:10.1007/s10847-011-0052-1
  38. Mokhtari, B.; Pourabdollah, K. Bull. Korean Chem. Soc. 2011, 32, 3979. https://doi.org/10.5012/bkcs.2011.32.11.3979
  39. Mokhtari, B.; Pourabdollah, K.; Dallali, N. J. Radioanal. Nucl. Chem. 2011, 287, 921. https://doi.org/10.1007/s10967-010-0881-1
  40. Mokhtari, B.; Pourabdollah, K. Asian J. Chem. 2011, 23, 4717.
  41. Mokhtari, B.; Pourabdollah, K. J. Coord. Chem. 2011, 64, 3189. https://doi.org/10.1080/00958972.2011.616930
  42. Mokhtari, B.; Pourabdollah, K. J. Incl. Phenom. Macrocycl. Chem. 2012. DOI:10.1007s10847-011-0062-z https://doi.org/10.1007s10847-011-0062-z
  43. Mokhtari, B.; Pourabdollah, K.; Dalali, N. J. Coord. Chem. 2011, 64, 743. https://doi.org/10.1080/00958972.2011.555538
  44. Mokhtari, B.; Pourabdollah, K. J. Electrochemical Soc. 2012. DOI:10.1149/2.048203jes
  45. Mokhtari, B.; Pourabdollah, K. Electroanalysis 2012. DOI:1002/elan.201100584 https://doi.org/10.1002/elan.201100584
  46. Mokhtari, B.; Pourabdollah, K. Desalination 2012, 292, 1. https://doi.org/10.1016/j.desal.2012.02.004
  47. Mokhtari, B.; Pourabdollah, K. J. Chilean Chem. Soc. 2012, 58, 827.
  48. Mokhtari, B.; Pourabdollah, K. Drug Chem. Toxicol. 2012. DOI:10.3109/01480545.2011.653490
  49. Mokhtari, B.; Pourabdollah, K. Supramol. Chem. 2012. DOI:10.1080/10610278.2012.655278
  50. Mokhtari, B.; Pourabdollah, K. J. Sci. Food Agric. 2012. DOI:10.1002/jsfa.5688
  51. Reis, M. T. A.; Membr, J. M. R. J. Science 1993, 84, 201.
  52. Othman, N.; Mat, H.; Goto, M. J. Membr. Sci. 2006, 282, 171. https://doi.org/10.1016/j.memsci.2006.05.020
  53. Bhowal, A.; Datta, S. J. Membr. Sci. 2001, 188, 1. https://doi.org/10.1016/S0376-7388(00)00586-X
  54. Venkateswaran, P.; Palanivelu, K. Hydrometallurgy 2005, 78, 107. https://doi.org/10.1016/j.hydromet.2004.10.021
  55. Strzelbck, J.; Charewcz, W. A.; Mackewcz, A. Sep. Sci. Technol. 1984, 19, 321. https://doi.org/10.1080/01496398408068586
  56. Thien, M. P.; Hatton, T. A.; Wang, D. I. C. Biotechnol. Bioeng. 1990, 35, 853. https://doi.org/10.1002/bit.260350902

Cited by

  1. Application of nano-baskets in preconcentration of tetrahedral oxoanions in the produced water of oil wells vol.24, pp.12, 2012, https://doi.org/10.1080/10610278.2012.732225
  2. Metabolic Fingerprints by Nano-baskets of 1,2-Alternate Calixarene and Emulsion Liquid Membranes vol.33, pp.7, 2012, https://doi.org/10.5012/bkcs.2012.33.7.2320
  3. Electrochemical Study of Structural Effects in Complexation of Nano-baskets: Calix[4]-1,2-crown-3, -crown-4, -crown-5, -crown-6 vol.42, pp.8, 2012, https://doi.org/10.1080/15533174.2012.680131
  4. Nano-baskets in Emulsion Liquid Membranes for Selective Extraction of Alkali Metals vol.59, pp.9, 2012, https://doi.org/10.1002/jccs.201100737
  5. Application of nano-baskets in metabolomics vol.77, pp.1-4, 2013, https://doi.org/10.1007/s10847-012-0233-6
  6. Separation of Alkali Metals by Emulsion Liquid Membranes Facilitated by Nano-Baskets of Calixarene pp.1520-5754, 2013, https://doi.org/10.1080/01496395.2013.794466
  7. RETRACTED ARTICLE: Inclusion of piperidine-modified nano-baskets towards rare earth metals vol.78, pp.1-4, 2014, https://doi.org/10.1007/s10847-013-0312-3
  8. RETRACTED ARTICLE: Application of nano-baskets in polymer inclusion membranes vol.79, pp.1-2, 2014, https://doi.org/10.1007/s10847-013-0320-3
  9. Voltammetric Study of Nano-baskets of Calix[4]-1,3-crowns-5, -crowns-6 Complexes vol.76, pp.None, 2012, https://doi.org/10.1016/j.electacta.2012.05.028
  10. Electrochemical investigation of nano-baskets of calix[4]-1,3-crowns-5,6 complexes vol.76, pp.3, 2012, https://doi.org/10.1007/s10847-012-0210-0
  11. Inclusion extraction of alkali metals by emulsion liquid membranes bearing nano-baskets vol.76, pp.3, 2012, https://doi.org/10.1007/s10847-012-0212-y