DOI QR코드

DOI QR Code

A Series of N-Alkylimidazolium Propylhexanamide Iodide for Dye-Sensitized Solar Cells

  • Lim, Sung-Su (Nanotechnology Research Center and Department of Applied Chemistry, Konkuk University) ;
  • Sarker, Subrata (Department of Advanced Technology Fusion, Konkuk University) ;
  • Yoon, Sun-Young (Department of Chemistry, Kwangwoon University) ;
  • Nath, Narayan Chandra Deb (Department of Advanced Technology Fusion, Konkuk University) ;
  • Kim, Young-Jun (Department of Applied Biochemistry, College of Biomedical and Health Science, Konkuk University) ;
  • Jeon, Heung-Bae (Department of Chemistry, Kwangwoon University) ;
  • Lee, Jae-Joon (Nanotechnology Research Center and Department of Applied Chemistry, Konkuk University)
  • Received : 2011.12.13
  • Accepted : 2012.01.31
  • Published : 2012.05.20

Abstract

We report a series of novel imidazolium iodides based ionic liquids (NMIPHI, NAIPHI, and NBIPHI) with different functional groups for the development of a quasi-solid type electrolyte for dye-sensitized solar cells (DSSCs). The diffusion coefficients of redox ions ($I^-$ and $I_3{^-}$) are dependent on the molecular weight and it was higher for lighter salts. Among the three ionic liquids, NMIPHI showed highest efficiency of 4.18% when it was used in a liquid electrolyte of a DSSC with $ca$. 6 ${\mu}m$ thick $TiO_2$ mesoporous film. Even though the efficiency was $ca$. 19% lower than that obtained from a liquid electrolyte composed of PMII. When NMIPHI was mixed with PMII with a molar ratio of 1:1 in a solvent free electrolyte, the efficiency of the DSSCs was enhanced compared to that based on pristine PMII.

Keywords

References

  1. O'Regan, B.; Gratzel, M. Nature 1991, 353, 737. https://doi.org/10.1038/353737a0
  2. Gratzel, M. J. Photochem. Photobiol. A-Chem. 2004, 164, 3. https://doi.org/10.1016/j.jphotochem.2004.02.023
  3. Nazeeruddin, M. K.; Angelis, F. D.; Fantacci, S.; Selloni, A.;Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Gratzel, M. J. Am. Chem. Soc. 2005, 127, 16835. https://doi.org/10.1021/ja052467l
  4. Bandara, J.; Yasomanee, J. P. Semicond. Sci. Technol. 2007, 22, 20. https://doi.org/10.1088/0268-1242/22/2/004
  5. O'Regan, B.; Lenzmann, F.; Muis, R.; Wienke, J. Chem. Mat. 2002, 14, 5023. https://doi.org/10.1021/cm020572d
  6. Kron, G.; Egerter, T.; Nelles, G.; Yasuda, A.; Werner, J. H.; Rau, U. Thin Solid Films 2002, 403, 242. https://doi.org/10.1016/S0040-6090(01)01590-5
  7. Murai, S.; Mikoshiba, S.; Sumino, H.; Kato, T.; Hayase, S. Chem. Commun. 2003, 13, 1534.
  8. Kawano, R.; Matsui, H.; Matsuyama, C.; Sato, A.; Susan, M. A. B. H.; Tanabe, N.; Watanabe, M. J. Photochem. Photobiol. A-Chem. 2004, 164, 87. https://doi.org/10.1016/j.jphotochem.2003.12.019
  9. Wang, N.; Lin, H.; Li, J.; Li, X. Appl. Phys. Lett. 2006, 19, 194104.
  10. Matsumoto, H.; Matsuda, T.; Tsuda, T.; Hagiwara, R.; Ito, Y.; Miyazaki, Y. Chem. Lett. 2001, 30, 26. https://doi.org/10.1246/cl.2001.26
  11. Wang, H.; Liu, X.; Wang, Z.; Li, H.; Li, D.; Meng, Q.; Chen, L. J. Phys. Chem. B 2006, 110, 5970. https://doi.org/10.1021/jp057121b
  12. Wu, J.; Hao, S.; Lan, Z.; Huang, M.; Huang, Y.; Li, P.; Yin, S.; Sato, T. J. Am. Chem. Soc. 2008, 130, 11568. https://doi.org/10.1021/ja802158q
  13. Nogueira, V. C.; Longo, C.; Nogueira, A. F.; Soto-Oviedo, M. A.; Paoli, M.-A. J. Photochem. Photobiol. A-Chem. 2006, 181, 226. https://doi.org/10.1016/j.jphotochem.2005.11.028
  14. Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Gratzel, M. J. Phys. Chem. B 2003, 107, 13280. https://doi.org/10.1021/jp0355399
  15. Kitamura, T.; Maitani, M.; Matsuda, M.; Wada, Y.; Yanagida, S. Chem. Lett. 2001, 30, 1054. https://doi.org/10.1246/cl.2001.1054
  16. Wang, P.; Zakeeruddin, S. M.; Comte, P.; Exnar, I.; Gratzel, M. J. Am. Chem. Soc. 2003, 125, 1166. https://doi.org/10.1021/ja029294+
  17. Wang, P.; Wang, L.; Ma, B.; Li, B.; Qiu, Y. J. Phys. Chem. B 2006, 110, 14406. https://doi.org/10.1021/jp060390x
  18. Rahman, M. M.; Son, H.-S.; Lim, S.-S.; Chung, K.-H.; Lee, J.-J. J. Electrochem. Sci. Technol. 2011, 2, 110. https://doi.org/10.5229/JECST.2011.2.2.110
  19. Chung, K.-H.; Rahman, M. M.; Son, H.-S.; Lee, J.-J. Int. J. Photoenergy 2012, Volume 2012, 6 Pages, DOI: 10 1155/2012/215802
  20. Nath, N. C. D.; Sarker, S.; Ahammad, A. J. S.; Lee, J.-J. Phys. Chem. Chem. Phys. 2012, 14, 4333. https://doi.org/10.1039/c2cp00035k
  21. Park, Y.; Jung, Y. M.; Sarker, S.; Lee, J.-J.; Lee, Y.; Lee, K.; Oh, J. J.; Joo, S.-W. Sol. Energy Mater. Sol. Cells 2010, 94, 857. https://doi.org/10.1016/j.solmat.2010.01.008
  22. Rahman, M.; Son, H.-S.; Lim, S.-S.; Chung, K.-H.; Lee, J.-J. Journal of Electrochemical Science and Technology 2011, 2, 110. https://doi.org/10.5229/JECST.2011.2.2.110
  23. Jung, Y. M.; Park, Y.; Sarker, S.; Lee, J.-J.; Dembereldorj, U.; Joo, S.-W. Sol. Energy Mater. Sol. Cells 2011, 95, 326. https://doi.org/10.1016/j.solmat.2010.05.008
  24. Leventis, N.; Gao, X. J. Phys. Chem. B 1999, 103, 5832. https://doi.org/10.1021/jp9903920
  25. Kuang, D.; Wang, P.; Ito, S.; Zakeeruddin, S. M.; Gratzel, M. J. Am. Chem. Soc. 2006, 128, 7732. https://doi.org/10.1021/ja061714y
  26. Santiago, F. F.; Bisquert, J.; Palomares, E.; Otero, L.; Kuang, D.; Zakeeruddin, S. M.; Gratzel, M. J. Phys. Chem. C 2007, 111, 6550. https://doi.org/10.1021/jp066178a
  27. Bai, Yu; Cao, Y.; Zhang, J.; Wang, M.; Li, R.; Wang, P.; Zakeeruddin, S. M.; Gratzel, M. Nat. Mater. 2008, 7, 626. https://doi.org/10.1038/nmat2224
  28. Cao, Y.; Zhang, J.; Bai, Y.; Li, R.; Zakeeruddin, S. M.; Grätzel, M.; Wang, P. J. Phys. Chem. C 2008, 112, 13775. https://doi.org/10.1021/jp805027v
  29. Cheng, P.; Wang, W.; Lan, T.; Chen, R.; Wang, J.; Yu, J.; Wu, H.; Yang, H.; Deng, C.; Guo, S. J. Photochem. Photobiol. A-Chem. 2010, 212, 147. https://doi.org/10.1016/j.jphotochem.2010.04.009

Cited by

  1. An affordable green energy source—Evolving through current developments of organic, dye sensitized, and perovskite solar cells vol.13, pp.9, 2016, https://doi.org/10.1080/15435075.2016.1171227