References
- Al-Halimi, R. K. (2003). Mining topic signals from text. Unpublished doctoral dissertation, University of Waterloo. Retrieved from: http://uwspace.uwaterloo.ca/handle/10012/1165.
- Barzilay, R., & Elhaadad, M. (1997). Using lexical chains for text summarization, In Proceedings of the Workshop on Intelligent Scalable Text Summarization at the ACL/EACL Conference, 2-9, Madrid, Spain.
- Bergstrom, T., & Karahalios, K. (2008). Conversation clusters: Human-computer dialog for topic extraction. Retrieved from: http://social.cs.uiuc.edu/papers/pdfs/bergstrom-1361.pdf.
- Brandow, R., Mite, K., & Rau, L. (1995). Automatic condensation of electronic publications by sentence selection. Information Processing & Management, 31(5), 675-685. https://doi.org/10.1016/0306-4573(95)00052-I
- Buitelaar, P., & Eigner, T. (2008). Topic extraction from scientific literature for competency management, Retrieved from: http://citeseerx.ist.psu.edu/.../download?doi=10.
- Businessdictionary.com (n.d.). Retrieved from: http://www.businessdictionary.com/
- Chung, Young Mee, & Kim, Yong Kwang (2008). A study on an effective event detection method for event-focused news summarization. Journal of the Korean Society for Information Management, 25(4), 227-243. https://doi.org/10.3743/KOSIM.2008.25.4.227
- Dave, K., Lawrence, S., & Pennock, D. M. (2004). Mining the peanut gallery: Opinion extraction and semantic classification of product reviews. Retrieved from: http://www.kushaldave.com/p451-dave.pdf.
- Definitions.net (n.d.). Retrieved from: http://www.definitions.net/
- Dey. L., & Haque, SK. M. (2008). Opinion mining fom noisy text data. Retrieved from: http://dl.acm.org/citation.cfm?id=1390763.
- Dong-A Daily News (2009). 2.19, 1.
- Edmundson, H. P. (1998). New methods in automatic extracting. In F. W. Lancaster, Indexing and abstracting in theory and practice (p. 269), London: Library Association Publishing.
- Hovy, E., & Lin, C. (1999). Automated text summarization in SUMMARIST. In Proceedings of the Workshop on Gaps and Bridges in NL Planning and Generation, 53-58. ECAI Conference. Budapest: Hungary.
- Kupiec, J., Pedersen, J., & Chen, F. (1995). A trainable document summarizer. Proceedings of the Eighteenth Annual International ACM Conference on Research, 68-73.
- Lee, Ji-Hye, & Chung, Young Mee (2009). An experimental study on opinion classification using supervised latent semantic indexing (LSI). Journal of the Korean Society for Information Management, 26(3), 451-462. https://doi.org/10.3743/KOSIM.2009.26.3.451
- Lee, Tae Young (2005). A Study on the construction of the automatic extracts and summaries: On the basis of scientific journal articles. Journal of the Korean Society for Library and Information Science, 39(3), 139-163.
- Liu, B. (2009). Opinion mining, Retrieved from: http://www.cs.uic.edu/-liub/FBS/opinion-mining.pdf.
- Mani, I. (2001). Automatic summarization. Amsterdam: John Benjamins Publishing Company.
- Manning, C. D., Raghavan, P., & Schutze, H. (2008). Introduction to information retrieval, Cambridge, New York: Cambridge University Press.
- Marcu, D. (1999). Discourse trees are good indicators of importance in text. In I. Mani, & M.T. Maybury (Eds.). Advanced in Automatic Text Summarization (pp. 123-136). Cambridge, Massachusetts: The MIT Press.
- Meadow, C. T., Boyce, B. R., & Kraft, D. H. (2000). Text information retrieval systems. San Diego: Academic Press. 208-211.
- Myaeng, S. H., & Jang, D. H. (1999). Development and evaluation of a statistically-based document summarization system, In I. Mani, & M.T. Maybury (Eds.), Advanced in Automatic Text Summarization (pp. 61-70). Cambridge, Massachusetts: The MIT Press.
- Pang, B., and Lee, L. (2008). Opinion mining and sentiment analysis. Retrieved from: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.147.1344
- Roth, B. (2007). Topic extraction and relation in instant messaging, Retrieved from: http://nlp.stanford.edu/courses/cs224n/2010/reports/rothben.pdf
- Schutze, H. (1998). Automatic word sense discrimination. Computational Linguistics, 24(1), 97-123.
- Teufel, S., & Moens, M. (1999). Argumentive classification of extracted sentences as a first step towards flexible abstracting, In I. Mani, & M.T. Maybury (Eds.), Advanced in Automatic Text Summarization(pp. 155-176). Cambridge, Massachusetts: the MIT Press.
- The free dictionary (n.d.). Retrieved from: www.thefreedictionary.com/.
- Thorleuchter, D. (2008). Finding new technological ideas and inventions with text mining and technique philosophy. Retreived from: http://www.springerlink.com/content/j21800t0768x6644/.
- Thorleuchter, D., Van den Poel, D., & Prinzie, A. (2009). Mining ideas from textual information. Retrieved from: http://www.feb.ugent.be/nl/Ondz/wp/Papers/wp_09_619.pdf.
- Wang, X., Zhang, K., Jin, X., & Shen, D. (2008). Mining common topics from multiple asynchronous text streams. Retrieved from: http://wsdm2009.org/papers/p192-wang.pdf.
- Webster online dictionary (n.d.). Retrieved from: http://www.websters-online-dictionary.org/.
- Wikipedia (n.d.) Retrieved from: http://ko.wikipedia.org/wiki/.
- Yourdictionary.com (n.d.). Retrieved from: www.yourdictionary.com.