참고문헌
- Abrate, S. (2008), "Functionally graded plates behave like homogeneous plates", Composites Part B: Engineering, 39(1), 151-158. https://doi.org/10.1016/j.compositesb.2007.02.026
- Bodaghi, M., Saidi, A. (2010), "Levy-type solution for buckling analysis of thick functionally graded rectangular plates based on the higher-order shear deformation plate theory", Appl. Math. Model., 34(11), 3659-3673. https://doi.org/10.1016/j.apm.2010.03.016
- Bouazza, M., Tounsi, A., Adda-Bedia, E.A., Megueni, A. (2010), "Thermoelastic stability analysis of functionally graded plates: An analytical approach", Comput. Mater. Sci., 49(4), 865-870. https://doi.org/10.1016/j.commatsci.2010.06.038
- Chehel Amirani, M., Khalili, S.M.R., Nemati, N. (2009), "Free vibration analysis of sandwich beam with FG core using the element free Galerkin method" Compos. Struct., 90(3), 373-379. https://doi.org/10.1016/j.compstruct.2009.03.023
- Chi, S., Chung, Y. (2006a), "Mechanical behavior of functionally graded material plates under transverse load - Part I: Analysis." Int. J. Sol. Struc, 43(13), 3657-3674. https://doi.org/10.1016/j.ijsolstr.2005.04.011
- Chi, S., Chung, Y. (2006b), "Mechanical behavior of functionally graded material plates under transverse load - Part II: Numerical results", Int. J. Sol. Struc, 43(13), 3675-3691. https://doi.org/10.1016/j.ijsolstr.2005.04.010
- Delale, F., Erdogan, F. (1983), "The crack problem for a nonhomogeneous plane", J. of Appl. Mech, 50, 609-614. https://doi.org/10.1115/1.3167098
- Feldman, E., Aboudi, J. (1997), "Buckling analysis of functionally graded plates subjected to uniaxial loading", Compos. Struct., 38(1-4), 29-36. https://doi.org/10.1016/S0263-8223(97)00038-X
- Gibson, LJ, Ashby, MF, Karam, GN., Wegst, U., Shercliff, HR. (1995), "Mechanical properties of natural materials. II. Microstructures for mechanical efficiency", Proc Roy Soc Lond A, 450(1938), 141-162. https://doi.org/10.1098/rspa.1995.0076
- Hill, R. (1965), "A self-consistent mechanics of composite materials", J Mech Phys Solids, 13(4), 213-222. https://doi.org/10.1016/0022-5096(65)90010-4
- Javaheri, R., Eslami, M. (2002), "Buckling of functionally graded plates under in-plane compressive loading", J. Appl. Math. Mech., 82(4), 277-283.
- Levinson, M. (1980), "An accurate simple theory of the statics and dynamics of elastic plates", Mech Res Commun, 7(6), 343-350. https://doi.org/10.1016/0093-6413(80)90049-X
- Mahdavian, M. (2009), "Buckling analysis of simply-supported functionally graded rectangular plates under non-uniform In-plane compressive loading", J. Solid Mech., 1(3), 213-225.
- Mindlin, RD. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech, 18(1), 31-38.
- Mohammadi, M., Saidi, A.R., Jomehzadeh, E. (2010a), "Levy solution for buckling analysis of functionally graded rectangular plates", Appl. Compos. Mater., 17(2), 81-93. https://doi.org/10.1007/s10443-009-9100-z
- Mohammadi, M., Saidi, A.R., Jomehzadeh, E. (2010b), "A novel analytical approach for the buckling analysis of moderately thick functionally graded rectangular plates with two simply-supported opposite edges", Proc. Inst. Mech. Engrs. Part C J. Mech. Eng. Sci., 224(9), 1831-1841. https://doi.org/10.1243/09544062JMES1804
- Mori, T., Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metall, 2, 1571-1574.
- Narita, Y. (2000), "Combinations for the free vibration behaviors of anisotropic rectangular plates under general edge conditions", J. Appl. Mech, 67(3), 568-573. https://doi.org/10.1115/1.1311959
- Reddy, J. (2004), "Mechanics of laminated composite plates and shells: theory and analysis", CRC.
- Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", J. Appl. Mech, 51, 745-752. https://doi.org/10.1115/1.3167719
- Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J Appl Mech-T ASME, 12(2), 69-77.
- Shariat, B., Eslami, M. (2005), "Buckling of functionally graded plates under in plane compressive loading based on the first order plate theory", Proceeding of the Fifth International Conference on Composite Science and Technology; American University of Sharjah, United Arab Emirates.
- Yang, J., Liew, K., Kitipornchai, S. (2005), "Second-order statistics of the elastic buckling of functionally graded rectangular plates", Compos. Sci. Technol., 65(7-8), 1165-1175. https://doi.org/10.1016/j.compscitech.2004.11.012
- Zhao, X., Lee, Y.Y., Liew, K.M. (2009), "Mechanical and thermal buckling analysis of functionally graded plates", Compos. Struct., 90(2), 161-171. https://doi.org/10.1016/j.compstruct.2009.03.005
피인용 문헌
- Refined plate theory for bending analysis of a HSLA steel plate under 3D temperature field vol.250, 2015, https://doi.org/10.1016/j.amc.2014.10.122
- Bending analysis of FGM plates using a sinusoidal shear deformation theory vol.23, pp.6, 2016, https://doi.org/10.12989/was.2016.23.6.543
- Generalized two-variable plate theory for multi-layered graphene sheets with arbitrary boundary conditions vol.225, pp.9, 2014, https://doi.org/10.1007/s00707-014-1093-5
- A new simple shear and normal deformations theory for functionally graded beams vol.18, pp.2, 2015, https://doi.org/10.12989/scs.2015.18.2.409
- Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model vol.15, pp.4, 2013, https://doi.org/10.12989/scs.2013.15.4.399
- Thermal buckling analysis of FG plates resting on elastic foundation based on an efficient and simple trigonometric shear deformation theory vol.18, pp.2, 2015, https://doi.org/10.12989/scs.2015.18.2.443
- Analyse of the behavior of functionally graded beams based on neutral surface position vol.55, pp.4, 2015, https://doi.org/10.12989/sem.2015.55.4.703
- A new hyperbolic shear deformation plate theory for static analysis of FGM plate based on neutral surface position vol.8, pp.3, 2015, https://doi.org/10.12989/gae.2015.8.3.305
- Analysis of buckling response of functionally graded sandwich plates using a refined shear deformation theory vol.22, pp.3, 2016, https://doi.org/10.12989/was.2016.22.3.291
- A new five-unknown refined theory based on neutral surface position for bending analysis of exponential graded plates vol.49, pp.4, 2014, https://doi.org/10.1007/s11012-013-9827-3
- Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories vol.18, pp.1, 2015, https://doi.org/10.12989/scs.2015.18.1.187
- Higher order flutter analysis of doubly curved sandwich panels with variable thickness under aerothermoelastic loading vol.60, pp.1, 2016, https://doi.org/10.12989/sem.2016.60.1.001
- Buckling analysis of sandwich plates with FGM face sheets resting on elastic foundation with various boundary conditions: an analytical approach vol.48, pp.8, 2013, https://doi.org/10.1007/s11012-013-9720-0
- A n-order four variable refined theory for bending and free vibration of functionally graded plates vol.17, pp.1, 2014, https://doi.org/10.12989/scs.2014.17.1.021
- Mathematical Modeling and Optimization of Functionally Graded Structures vol.2013, 2013, https://doi.org/10.1155/2013/536867
- Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations vol.13, pp.1, 2017, https://doi.org/10.1007/s10999-015-9318-x
- Higher order refined computational models for the stability analysis of FGM plates – Analytical solutions vol.47, 2014, https://doi.org/10.1016/j.euromechsol.2014.06.003
- Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect vol.18, pp.2, 2015, https://doi.org/10.12989/scs.2015.18.2.425
- A new higher order shear deformation model for functionally graded beams vol.20, pp.5, 2016, https://doi.org/10.1007/s12205-015-0252-0
- Static bending and free vibration of FGM beam using an exponential shear deformation theory vol.4, pp.1, 2015, https://doi.org/10.12989/csm.2015.4.1.099
- Buckling behaviours of functionally graded polymeric thin-walled hemispherical shells vol.21, pp.4, 2016, https://doi.org/10.12989/scs.2016.21.4.849
- Flexure of power law governed functionally graded plates using ABAQUS UMAT vol.46, 2015, https://doi.org/10.1016/j.ast.2015.06.021
- Dynamic behavior of FGM beam using a new first shear deformation theory vol.10, pp.2, 2016, https://doi.org/10.12989/eas.2016.10.2.451
- Stress, vibration and buckling analyses of FGM plates—A state-of-the-art review vol.120, 2015, https://doi.org/10.1016/j.compstruct.2014.09.070
- Static and dynamic behavior of FGM plate using a new first shear deformation plate theory vol.57, pp.1, 2016, https://doi.org/10.12989/sem.2016.57.1.127
- Analysis of functionally graded plates using a sinusoidal shear deformation theory vol.19, pp.4, 2017, https://doi.org/10.12989/sss.2017.19.4.441
- A new shear deformation plate theory with stretching effect for buckling analysis of functionally graded sandwich plates vol.24, pp.5, 2017, https://doi.org/10.12989/scs.2017.24.5.569
- Shape Optimization and Stability Analysis for Kiewitt Spherical Reticulated Shell of Triangular Pyramid System vol.2019, pp.None, 2012, https://doi.org/10.1155/2019/2723082
- Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory vol.28, pp.1, 2012, https://doi.org/10.12989/was.2019.28.1.019
- Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT vol.69, pp.5, 2012, https://doi.org/10.12989/sem.2019.69.5.511
- Optimization of laminated composite plates subjected to nonuniform thermal loads vol.27, pp.6, 2012, https://doi.org/10.1177/0967391119846242
- Wave dispersion properties in imperfect sigmoid plates using various HSDTs vol.33, pp.5, 2012, https://doi.org/10.12989/scs.2019.33.5.699
- Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method vol.27, pp.1, 2012, https://doi.org/10.12989/cac.2021.27.1.073
- A Critical Review of Recent Research of Free Vibration and Stability of Functionally Graded Materials of Sandwich Plate vol.1094, pp.1, 2021, https://doi.org/10.1088/1757-899x/1094/1/012081