DOI QR코드

DOI QR Code

Buckling analysis of functionally graded hybrid composite plates using a new four variable refined plate theory

  • Fekrar, A. (Laboratoire des Materiaux et Hydrologie, Universite de Sidi Bel Abbes) ;
  • El Meiche, N. (Laboratoire des Materiaux et Hydrologie, Universite de Sidi Bel Abbes) ;
  • Bessaim, A. (Laboratoire des Materiaux et Hydrologie, Universite de Sidi Bel Abbes) ;
  • Tounsi, A. (Laboratoire des Materiaux et Hydrologie, Universite de Sidi Bel Abbes) ;
  • Adda Bedia, E.A. (Laboratoire des Materiaux et Hydrologie, Universite de Sidi Bel Abbes)
  • 투고 : 2012.02.26
  • 심사 : 2012.05.01
  • 발행 : 2012.07.25

초록

In this research, mechanical buckling of hybrid functionally graded plates is considered using a new four variable refined plate theory. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The plate properties are assumed to be varied through the thickness following a simple power law distribution in terms of volume fraction of material constituents. Governing equations are derived from the principle of minimum total potential energy. The closed-form solution of a simply supported rectangular plate subjected to in-plane loading has been obtained by using the Navier method. The effectiveness of the theories is brought out through illustrative examples.

키워드

참고문헌

  1. Abrate, S. (2008), "Functionally graded plates behave like homogeneous plates", Composites Part B: Engineering, 39(1), 151-158. https://doi.org/10.1016/j.compositesb.2007.02.026
  2. Bodaghi, M., Saidi, A. (2010), "Levy-type solution for buckling analysis of thick functionally graded rectangular plates based on the higher-order shear deformation plate theory", Appl. Math. Model., 34(11), 3659-3673. https://doi.org/10.1016/j.apm.2010.03.016
  3. Bouazza, M., Tounsi, A., Adda-Bedia, E.A., Megueni, A. (2010), "Thermoelastic stability analysis of functionally graded plates: An analytical approach", Comput. Mater. Sci., 49(4), 865-870. https://doi.org/10.1016/j.commatsci.2010.06.038
  4. Chehel Amirani, M., Khalili, S.M.R., Nemati, N. (2009), "Free vibration analysis of sandwich beam with FG core using the element free Galerkin method" Compos. Struct., 90(3), 373-379. https://doi.org/10.1016/j.compstruct.2009.03.023
  5. Chi, S., Chung, Y. (2006a), "Mechanical behavior of functionally graded material plates under transverse load - Part I: Analysis." Int. J. Sol. Struc, 43(13), 3657-3674. https://doi.org/10.1016/j.ijsolstr.2005.04.011
  6. Chi, S., Chung, Y. (2006b), "Mechanical behavior of functionally graded material plates under transverse load - Part II: Numerical results", Int. J. Sol. Struc, 43(13), 3675-3691. https://doi.org/10.1016/j.ijsolstr.2005.04.010
  7. Delale, F., Erdogan, F. (1983), "The crack problem for a nonhomogeneous plane", J. of Appl. Mech, 50, 609-614. https://doi.org/10.1115/1.3167098
  8. Feldman, E., Aboudi, J. (1997), "Buckling analysis of functionally graded plates subjected to uniaxial loading", Compos. Struct., 38(1-4), 29-36. https://doi.org/10.1016/S0263-8223(97)00038-X
  9. Gibson, LJ, Ashby, MF, Karam, GN., Wegst, U., Shercliff, HR. (1995), "Mechanical properties of natural materials. II. Microstructures for mechanical efficiency", Proc Roy Soc Lond A, 450(1938), 141-162. https://doi.org/10.1098/rspa.1995.0076
  10. Hill, R. (1965), "A self-consistent mechanics of composite materials", J Mech Phys Solids, 13(4), 213-222. https://doi.org/10.1016/0022-5096(65)90010-4
  11. Javaheri, R., Eslami, M. (2002), "Buckling of functionally graded plates under in-plane compressive loading", J. Appl. Math. Mech., 82(4), 277-283.
  12. Levinson, M. (1980), "An accurate simple theory of the statics and dynamics of elastic plates", Mech Res Commun, 7(6), 343-350. https://doi.org/10.1016/0093-6413(80)90049-X
  13. Mahdavian, M. (2009), "Buckling analysis of simply-supported functionally graded rectangular plates under non-uniform In-plane compressive loading", J. Solid Mech., 1(3), 213-225.
  14. Mindlin, RD. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech, 18(1), 31-38.
  15. Mohammadi, M., Saidi, A.R., Jomehzadeh, E. (2010a), "Levy solution for buckling analysis of functionally graded rectangular plates", Appl. Compos. Mater., 17(2), 81-93. https://doi.org/10.1007/s10443-009-9100-z
  16. Mohammadi, M., Saidi, A.R., Jomehzadeh, E. (2010b), "A novel analytical approach for the buckling analysis of moderately thick functionally graded rectangular plates with two simply-supported opposite edges", Proc. Inst. Mech. Engrs. Part C J. Mech. Eng. Sci., 224(9), 1831-1841. https://doi.org/10.1243/09544062JMES1804
  17. Mori, T., Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metall, 2, 1571-1574.
  18. Narita, Y. (2000), "Combinations for the free vibration behaviors of anisotropic rectangular plates under general edge conditions", J. Appl. Mech, 67(3), 568-573. https://doi.org/10.1115/1.1311959
  19. Reddy, J. (2004), "Mechanics of laminated composite plates and shells: theory and analysis", CRC.
  20. Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", J. Appl. Mech, 51, 745-752. https://doi.org/10.1115/1.3167719
  21. Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J Appl Mech-T ASME, 12(2), 69-77.
  22. Shariat, B., Eslami, M. (2005), "Buckling of functionally graded plates under in plane compressive loading based on the first order plate theory", Proceeding of the Fifth International Conference on Composite Science and Technology; American University of Sharjah, United Arab Emirates.
  23. Yang, J., Liew, K., Kitipornchai, S. (2005), "Second-order statistics of the elastic buckling of functionally graded rectangular plates", Compos. Sci. Technol., 65(7-8), 1165-1175. https://doi.org/10.1016/j.compscitech.2004.11.012
  24. Zhao, X., Lee, Y.Y., Liew, K.M. (2009), "Mechanical and thermal buckling analysis of functionally graded plates", Compos. Struct., 90(2), 161-171. https://doi.org/10.1016/j.compstruct.2009.03.005

피인용 문헌

  1. Refined plate theory for bending analysis of a HSLA steel plate under 3D temperature field vol.250, 2015, https://doi.org/10.1016/j.amc.2014.10.122
  2. Bending analysis of FGM plates using a sinusoidal shear deformation theory vol.23, pp.6, 2016, https://doi.org/10.12989/was.2016.23.6.543
  3. Generalized two-variable plate theory for multi-layered graphene sheets with arbitrary boundary conditions vol.225, pp.9, 2014, https://doi.org/10.1007/s00707-014-1093-5
  4. A new simple shear and normal deformations theory for functionally graded beams vol.18, pp.2, 2015, https://doi.org/10.12989/scs.2015.18.2.409
  5. Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model vol.15, pp.4, 2013, https://doi.org/10.12989/scs.2013.15.4.399
  6. Thermal buckling analysis of FG plates resting on elastic foundation based on an efficient and simple trigonometric shear deformation theory vol.18, pp.2, 2015, https://doi.org/10.12989/scs.2015.18.2.443
  7. Analyse of the behavior of functionally graded beams based on neutral surface position vol.55, pp.4, 2015, https://doi.org/10.12989/sem.2015.55.4.703
  8. A new hyperbolic shear deformation plate theory for static analysis of FGM plate based on neutral surface position vol.8, pp.3, 2015, https://doi.org/10.12989/gae.2015.8.3.305
  9. Analysis of buckling response of functionally graded sandwich plates using a refined shear deformation theory vol.22, pp.3, 2016, https://doi.org/10.12989/was.2016.22.3.291
  10. A new five-unknown refined theory based on neutral surface position for bending analysis of exponential graded plates vol.49, pp.4, 2014, https://doi.org/10.1007/s11012-013-9827-3
  11. Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories vol.18, pp.1, 2015, https://doi.org/10.12989/scs.2015.18.1.187
  12. Higher order flutter analysis of doubly curved sandwich panels with variable thickness under aerothermoelastic loading vol.60, pp.1, 2016, https://doi.org/10.12989/sem.2016.60.1.001
  13. Buckling analysis of sandwich plates with FGM face sheets resting on elastic foundation with various boundary conditions: an analytical approach vol.48, pp.8, 2013, https://doi.org/10.1007/s11012-013-9720-0
  14. A n-order four variable refined theory for bending and free vibration of functionally graded plates vol.17, pp.1, 2014, https://doi.org/10.12989/scs.2014.17.1.021
  15. Mathematical Modeling and Optimization of Functionally Graded Structures vol.2013, 2013, https://doi.org/10.1155/2013/536867
  16. Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations vol.13, pp.1, 2017, https://doi.org/10.1007/s10999-015-9318-x
  17. Higher order refined computational models for the stability analysis of FGM plates – Analytical solutions vol.47, 2014, https://doi.org/10.1016/j.euromechsol.2014.06.003
  18. Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect vol.18, pp.2, 2015, https://doi.org/10.12989/scs.2015.18.2.425
  19. A new higher order shear deformation model for functionally graded beams vol.20, pp.5, 2016, https://doi.org/10.1007/s12205-015-0252-0
  20. Static bending and free vibration of FGM beam using an exponential shear deformation theory vol.4, pp.1, 2015, https://doi.org/10.12989/csm.2015.4.1.099
  21. Buckling behaviours of functionally graded polymeric thin-walled hemispherical shells vol.21, pp.4, 2016, https://doi.org/10.12989/scs.2016.21.4.849
  22. Flexure of power law governed functionally graded plates using ABAQUS UMAT vol.46, 2015, https://doi.org/10.1016/j.ast.2015.06.021
  23. Dynamic behavior of FGM beam using a new first shear deformation theory vol.10, pp.2, 2016, https://doi.org/10.12989/eas.2016.10.2.451
  24. Stress, vibration and buckling analyses of FGM plates—A state-of-the-art review vol.120, 2015, https://doi.org/10.1016/j.compstruct.2014.09.070
  25. Static and dynamic behavior of FGM plate using a new first shear deformation plate theory vol.57, pp.1, 2016, https://doi.org/10.12989/sem.2016.57.1.127
  26. Analysis of functionally graded plates using a sinusoidal shear deformation theory vol.19, pp.4, 2017, https://doi.org/10.12989/sss.2017.19.4.441
  27. A new shear deformation plate theory with stretching effect for buckling analysis of functionally graded sandwich plates vol.24, pp.5, 2017, https://doi.org/10.12989/scs.2017.24.5.569
  28. Shape Optimization and Stability Analysis for Kiewitt Spherical Reticulated Shell of Triangular Pyramid System vol.2019, pp.None, 2012, https://doi.org/10.1155/2019/2723082
  29. Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory vol.28, pp.1, 2012, https://doi.org/10.12989/was.2019.28.1.019
  30. Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT vol.69, pp.5, 2012, https://doi.org/10.12989/sem.2019.69.5.511
  31. Optimization of laminated composite plates subjected to nonuniform thermal loads vol.27, pp.6, 2012, https://doi.org/10.1177/0967391119846242
  32. Wave dispersion properties in imperfect sigmoid plates using various HSDTs vol.33, pp.5, 2012, https://doi.org/10.12989/scs.2019.33.5.699
  33. Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method vol.27, pp.1, 2012, https://doi.org/10.12989/cac.2021.27.1.073
  34. A Critical Review of Recent Research of Free Vibration and Stability of Functionally Graded Materials of Sandwich Plate vol.1094, pp.1, 2021, https://doi.org/10.1088/1757-899x/1094/1/012081