DOI QR코드

DOI QR Code

Uni-axial behaviour of normal-strength concrete-filled-steel-tube columns with external confinement

  • Ho, J.C.M. (Department of Civil Engineering, The University of Hong Kong) ;
  • Luo, L. (Department of Civil Engineering, The University of Hong Kong)
  • Received : 2012.03.21
  • Accepted : 2012.07.10
  • Published : 2012.12.25

Abstract

Because of the heavy demand of confining steel to restore the column ductility in seismic regions, it is more efficient to confine these columns by hollow steel tube to form concrete-filled-steel-tube (CFST) column. Compared with transverse reinforcing steel, steel tube provides a stronger and more uniform confining pressure to the concrete core, and reduces the steel congestion problem for better concrete placing quality. However, a major shortcoming of CFST columns is the imperfect steel-concrete interface bonding occurred at the elastic stage as steel dilates more than concrete in compression. This adversely affects the confining effect and decrease the elastic modulus. To resolve the problem, it is proposed in this study to use external steel confinement in the forms of rings and ties to restrict the dilation of steel tube. For verification, a series of uni-axial compression test was performed on some CFST columns with external steel rings and ties. From the results, it was found that: (1) Both rings and ties improved the stiffness of the CFST columns and (2) the rings improve significantly the axial strength of the CFST columns while the ties did not improve the axial strength. Lastly, a theoretical model for predicting the axial strength of confined CFST columns will be developed.

Keywords

References

  1. Aly, T., Elchalakani, M., Thayalan, P. and Patnaikuni, I. (2010), "Incremental collapse threshold for pushout resistance of circular concrete filled steel tubular columns", J. Constr. Steel Res., 66(1), 11-18. https://doi.org/10.1016/j.jcsr.2009.08.002
  2. Bayrak, O. and Sheikh, S.A. (1998), "Confinement reinforcement design considerations for ductile HSC columns", J. Struct. Eng.-ASCE, 124(9), 999-1010. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:9(999)
  3. Bradford, M.A. (1996), "Design strength of slender concrete-filled rectangular steel tubes", ACI Struct. J., 93(2), 229-235.
  4. Choi, S.M., Jung, D.S., Kim, D.J. and Kim, J.H. (2007), "An evaluation equation of load capacities for CFT square column-to-beam connections with combined diaphragm", Steel Compos. Struct., 7(4), 303-320. https://doi.org/10.12989/scs.2007.7.4.303
  5. Dai, X. and Lam, D. (2010), "Axial compressive behaviour of stub concrete-filled columns with elliptical stainless steel hollow sections", Steel Compos. Struct., 10(6), 517-539. https://doi.org/10.12989/scs.2010.10.6.517
  6. Elchalakani, M. and Zhao, X.L. (2008), "Concrete-filled cold-formed circular steel tubes subjected to variable amplitude cyclic bending", Eng. Struct., 30(2), 287-299. https://doi.org/10.1016/j.engstruct.2007.03.025
  7. Ellobody, E. and Young, B. (2006), "Design and behaviour of concrete-filled cold-formed stainle4ss steel tube columns", Eng. Struct., 28(5), 716-728. https://doi.org/10.1016/j.engstruct.2005.09.023
  8. Elremaily, A. and Azizinamini, A. (2002), "Behavior and strength of circular concrete-filled tube columns", J. Constr. Steel Res., 58(12), 1567-1591. https://doi.org/10.1016/S0143-974X(02)00005-6
  9. El-Shihy, A.M., Fawzy, H.M., Mustafa, S.A. and El-Zohairy, A.A. (2010), "Experimental and numerical analysis of composite beams strengthened by CFRP laminates in hogging moment region", Steel Compos. Struct., 10(3), 281-295. https://doi.org/10.12989/scs.2010.10.3.281
  10. Fang, Y.F. and Zhu, L.T. (2009), "Recycled aggregate concrete filled steel SHS beam-columns subjected to cyclic loading", Steel Compos. Struct., 9(1), 19-38. https://doi.org/10.12989/scs.2009.9.1.019
  11. Ferretti, E. (2004), "On poisson ratio and volumetric strain in concrete", Int. J. Fracture, 126(3), 49-55. https://doi.org/10.1023/B:FRAC.0000026587.43467.e6
  12. Furlong, R.W. (1967), "Strength of steel-encased concrete beam columns", J. Struct. Div.-ASCE, 93(5), 113-124.
  13. Giakoumelis, G. and Lam, D. (2004), "Axial capacity of circular concrete-filled tube columns", J. Constr. Steel Res., 60(7), 1049-1068. https://doi.org/10.1016/j.jcsr.2003.10.001
  14. Gonçalves, R. and Camotim, D. (2010), "Steel-concrete composite bridge analysis using generalised beam theory", Steel Compos. Struct., 10(3), 223-243. https://doi.org/10.12989/scs.2010.10.3.223
  15. Han, L.H. (2002), "Tests on stub columns of concrete-filled RHS sections", J. Constr. Steel Res., 58(3), 353-372. https://doi.org/10.1016/S0143-974X(01)00059-1
  16. Han, L.H., Lu, H., Yao, G.H. and Liao, F.Y. (2006), "Further study on the flexural behaviour of concrete-filled steel tube", J. Constr. Steel Res., 62(6), 554-565. https://doi.org/10.1016/j.jcsr.2005.09.002
  17. Han, L.H. (2007), Concrete filled steel structures: theory and practice, second edition, Science Press, Beijing, China.
  18. Ho, J.C.M. and Pam, H.J. (2003), "Inelastic design of low-axially loaded high-strength reinforced concrete columns", Eng. Struct., 25(8), 1083-1096. https://doi.org/10.1016/S0141-0296(03)00050-6
  19. Ho, J.C.M., Lam, J.Y.K. and Kwan, A.K.H. (2010), "Effectiveness of adding confinement for ductility improvement of high-strength concrete columns", Eng. Struct., 32(3), 714-725. https://doi.org/10.1016/j.engstruct.2009.11.017
  20. Ho, J.C.M. (2011a), "Limited ductility design of reinforced concrete columns for tall buildings in low to moderate seismicity regions", Struct. Des. Tall Spec., 20(1), 102-120. https://doi.org/10.1002/tal.610
  21. Ho, J.C.M. (2011b), "Inelastic design of high-axially loaded concrete columns in moderate seismicity regions", Struct. Eng. Mech., 39(4), 559-578. https://doi.org/10.12989/sem.2011.39.4.559
  22. Hsu, H.L., Juang, J.L. and Luo, K.T. (2009), "Experimental evaluation on the seismic performance of high strength thin-walled composite members accounting for sectional aspect ratio effect", Steel Compos. Struct., 9(4), 367-380. https://doi.org/10.12989/scs.2009.9.4.367
  23. Huang, C.S., Yeh, Y.K., Liu, G.Y., Hu, H.T., Tsai, K.C., Weng, Y.T., Wang, S.H. and Wu, M.H. (2002), "Axial load behaviour of stiffened concrete-filled steel columns", J. Struct. Eng.-ASCE, 128(9), 1222-1230. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1222)
  24. Hu, H.T., Huang, C.S. and Chen, Z.L. (2005), "Finite element analysis of CFT columns subjected to an axial compressive force and bending moment in combination", J. Constr. Steel Res., 61(12), 1692-1712. https://doi.org/10.1016/j.jcsr.2005.05.002
  25. Hu, H.T., Su, F.C. and Elchalakani, M. (2010), "Finite element analysis of CFT columns subjected to pure bending moment", Steel Compos. Struct., 10(5), 415-428. https://doi.org/10.12989/scs.2010.10.5.415
  26. Huang, Y., Long, Y. and Cai, J. (2008), "Ultimate strength of rectangular concrete-filled steel tubular (CFT) stub columns under axial compression", Steel Compos. Struct., 8(2), 115-128. https://doi.org/10.12989/scs.2008.8.2.115
  27. Johansson, M. and Gylltoft, K. (2002), "Mechanical behaviour of circular steel-concrete composite stub columns", J. Struct. Eng.-ASCE, 128(8), 1073-1081. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:8(1073)
  28. Kitada, T. (1998), "Ultimate strength and ductility of state-of-the-art concrete-filled steel bridge piers in Japan", Steel Compos. Struct., 20(4-6), 347-354.
  29. Knowles, R.B. and Park, R. (1969), "Strength of concrete filled steel tubular columns", J. Struct. Div.-ASCE, 95(12), 2565-2587.
  30. Lam, L. and Teng, J.G. (2009), "Stress-strain model for FRP-confined concrete under cyclic axial compression", Eng. Struct., 31(2), 308-321. https://doi.org/10.1016/j.engstruct.2008.08.014
  31. Lam, J.Y.K., Ho, J.C.M. and Kwan, A.K.H. (2009a), "Flexural ductility of high-strength concrete columns with minimal confinement", Mater. Struct., 42(7), 909-921. https://doi.org/10.1617/s11527-008-9431-5
  32. Lam, J.Y.K., Ho, J.C.M. and Kwan, A.K.H. (2009b), "Maximum axial load level and minimum confinement for limited ductility design of concrete columns", Comput. Concrete, 6(5), 357-376. https://doi.org/10.12989/cac.2009.6.5.357
  33. Lee, S.J. (2007), "Capacity and the moment-curvature relationship of high-strength concrete filled steel tube columns under eccentric loads", Steel Compos. Struct., 7(2), 135-160. https://doi.org/10.12989/scs.2007.7.2.135
  34. Li, B., Park, R. and Tanaka, H. (1991), "Effect of confinement on the behaviour of high strength concrete columns under seismic loading", Proceedings, Pacific Conference on Earthquake Engineering, Auckland, 67-78.
  35. Liao, F.Y., Han, L.H. and He, S.H. (2011), "Behavior of CFST short column and beam with initial concrete imperfection: Experiments", J. Constr. Steel Res., 67(12), 1922-1935. https://doi.org/10.1016/j.jcsr.2011.06.009
  36. Lu, X. and Hsu, C.T.T. (2007), "Tangent poisson's ratio of high-strength concrete in triaxial compression", Mag. Concrete Res., 59(1), 69-77. https://doi.org/10.1680/macr.2007.59.1.69
  37. Nakanishi, K., Kitada, T. and Nakai, H. (1999), "Experimental study on ultimate strength and ductility of concrete filled steel columns under strong earthquake", J. Constr. Steel Res., 51(3), 297-310. https://doi.org/10.1016/S0143-974X(99)00006-1
  38. Nezamian, A., Al-Mahaidi, R. and Grundy, P. (2006), "Bond strength of concrete plugs embedded in tubular steel piles under cyclic loading", Can. J. Civil Eng., 33(2), 111-125. https://doi.org/10.1139/l05-091
  39. Pam, H.J. and Ho, J.C.M. (2001), "Flexural strength enhancement of confined reinforced concrete columns", Proc. Inst. Civil Eng. Struct. Build., 146(4), 363-370. https://doi.org/10.1680/stbu.2001.146.4.363
  40. Pam, H.J. and Ho, J.C.M. (2009), "Length of critical region for confinement steel in limited ductility highstrength reinforced concrete columns", Eng. Struct., 31(12), 2896-2908. https://doi.org/10.1016/j.engstruct.2009.07.015
  41. Park, J.W., Hong, Y.K. and Choi, S.M. (2010), "Behaviors of concrete filled square steel tubes confined b carbon fiber sheets (CFS) under compression and cyclic loads", Steel Compos. Struct., 10(2), 187-205. https://doi.org/10.12989/scs.2010.10.2.187
  42. Paultre, P., Legeron, F. and Mongeau, D. (2001), "Influence of concrete strength and transverse reinforcement yield strength on behavior of high-strength concrete columns", ACI Struct. J., 98(4), 490-501.
  43. Petrus, C., Hamid, H.A., Ibrahim, A. and Parke, G. (2010), "Experimental behaviour of concrete filled thin walled steel tubes with tab stiffeners", J. Constr. Steel Res., 66(7), 915-922. https://doi.org/10.1016/j.jcsr.2010.02.006
  44. Persson, B. (1999), "Poisson's ratio of high-performance concrete", Cement Concrete Res., 29(10), 1647-1653. https://doi.org/10.1016/S0008-8846(99)00159-3
  45. Roeder, C.W., Cameron, B. and Brown, C.B. (1999), "Composite action in concrete filled tubes", J. Struct. Eng.-ASCE, 125(5), 447-484.
  46. Sakino, K., Nakahara, H., Morino, S. and Nishiyama, I. (2004), "Behavior of centrally loaded concrete-filled steel tube short columns", J. Struct. Eng.-ASCE, 130(2), 180-188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180)
  47. Tokgoz, S. and Dundar, C. (2008), "Experimental tests on biaxially loaded concrete-encased composite columns", Steel Compos. Struct., 8(5), 423-438. https://doi.org/10.12989/scs.2008.8.5.423
  48. Uenaka, K., Kitoh, H. and Sonoda, K. (2008), "Concrete filled double skin tubular members subjected to bending", Steel Compos. Struct., 8(4), 297-312. https://doi.org/10.12989/scs.2008.8.4.297
  49. Usami, T. and Fukumoto, Y. (1984), "Welded box compression members", J. Struct. Eng.-ASCE, 110(10), 2457-2470. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:10(2457)
  50. Usami, T. and Ge, H. (1994), "Ductility of concrete-filled steel box columns under cyclic loading", J. Struct. Eng.-ASCE, 120(7), 2021-2040. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:7(2021)
  51. Uy, B. (2001), "Strength of short concrete filled high strength steel box columns", J. Constr. Steel Res., 57(2), 113-134. https://doi.org/10.1016/S0143-974X(00)00014-6
  52. Valente, I.B. and Cruz, P.J.S. (2010), "Experimental analysis on steel and lightweight concrete composite beams", Steel Compos. Struct., 10(2), 169-185. https://doi.org/10.12989/scs.2010.10.2.169
  53. Watson, S., Zahn, F.A. and Park, R. (1994), "Confining reinforcement for concrete columns", J. Struct. Eng.- ASCE, 120(6), 1799-1824.
  54. Wu, H. and Wang, Y. (2010), "Experimental study on reinforced high-strength concrete short columns confined with AFRP sheets", Steel Compos. Struct., 10(6), 501-516. https://doi.org/10.12989/scs.2010.10.6.501
  55. Yin, X. and Lu, X. (2010), "Study on push-out test and bond stress-slip relationship of circular concrete filled steel tube", Steel Compos. Struct., 10(4), 317-329. https://doi.org/10.1007/BF03215840
  56. Young, B. and Ellobody, E. (2006), "Experimental investigation of concrete-filled cold formed high-strength stainless steel tube columns", J. Constr. Steel Res., 62(5), 484-492. https://doi.org/10.1016/j.jcsr.2005.08.004
  57. Wright, H.D. (1995), "Local stability of filled and encased steel sections", J. Struct. Eng.-ASCE, 121(10), 1382- 1388. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:10(1382)
  58. Wu, Y.F. and Wei, Y.Y. (2010), "Effects of cross-sectional aspect ratio on the strength of CFRP-confined rectangular concrete columns", Eng. Struct., 32(1), 32-45. https://doi.org/10.1016/j.engstruct.2009.08.012
  59. Yan, Z.H. and Au, F.T.K. (2010), "Nonlinear dynamic analysis of frames with plastic hinges at arbitrary locations", Struct. Des. Tall Spec., 19(7), 778-801.
  60. Zhao, H. and Yuan, Y. (2010), "Experimental studies on composite beams with high-strength steel and concrete", Steel Compos. Struct., 10(5), 373-383. https://doi.org/10.1007/BF03215845
  61. Zhou, K.J.H., Ho, J.C.M. and Su, R.K.L. (2010), "Normalised rotation capacity for deformability evaluation of high-performance concrete beams", Earthq. Struct., 1(3), 269-287. https://doi.org/10.12989/eas.2010.1.3.269

Cited by

  1. High-strength RC columns subjected to high-axial and increasing cyclic lateral loads vol.7, pp.5, 2014, https://doi.org/10.12989/eas.2014.7.5.779
  2. Improving interface bonding of double-skinned CFST columns vol.65, pp.20, 2013, https://doi.org/10.1680/macr.13.00041
  3. Experimental and theoretical studies of confined HSCFST columns under uni-axial compression vol.7, pp.4, 2014, https://doi.org/10.12989/eas.2014.7.4.527
  4. Theoretical model for double-skinned concrete-filled-steel-tubular columns with external confinement vol.21, pp.5, 2015, https://doi.org/10.3846/13923730.2014.893913
  5. Seismic performance and damage evaluation of spiral ribbed thin-walled concrete filled and encased steel tube composite columns vol.20, pp.6, 2012, https://doi.org/10.12989/eas.2021.20.6.669