DOI QR코드

DOI QR Code

Some properties of the Green's function of simplified elastodynamic problems

  • Sanchez-Sesma, Francisco J. (Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico) ;
  • Rodriguez-Castellanos, Alejandro (Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas) ;
  • Perez-Gavilan, Juan J. (Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico) ;
  • Marengo-Mogollon, Humberto (Coordinacion de Proyectos Hidroelectricos, Comision Federal de Electricidad) ;
  • Perez-Rocha, Luis E. (Division de Sistemas Mecanicos, Instituto de Investigaciones Electricas) ;
  • Luzon, Francisco (Division de Sistemas Mecanicos, Instituto de Investigaciones Electricas)
  • Received : 2011.12.07
  • Accepted : 2012.04.10
  • Published : 2012.06.25

Abstract

It is now widely accepted that the resulting displacement field within elastic, inhomogeneous, anisotropic solids subjected to equipartitioned, uniform illumination from uncorrelated sources, has intensities that follow diffusion-like equations. Typically, coda waves are invoked to illustrate this concept. These waves arrive later as a consequence of multiple scattering and appear at "the tail" (coda, in Latin) of seismograms and are usually considered an example of diffuse field. It has been demonstrated that the average correlations of motions within a diffuse field, in frequency domain, is proportional to the imaginary part of Green's function tensor. If only one station is available, the average autocorrelation is equal to the average squared amplitudes or the average power spectrum and this gives the Green's function at the source itself. Several works address this point from theoretical and experimental point of view. However, a complete and explicit analytical description is lacking. In this work we study analytically some properties of the Green's function, specifically the imaginary part of Green's function for 2D antiplane problems. This choice is guided by the fact that these scalar problems have a closed analytical solution (Kausel 2006). We assume the diffusiveness of the field and explore its analytical consequences.

Keywords

References

  1. Aki, K. (1957), "Space and time spectra of stationary stochastic waves with special reference to microtremors", Bull. Earthq. Res. Inst., 35(3), 415-456.
  2. Aki, K. and Chouet, B. (1975), "Origin of coda waves: Source, attenuation and scattering effects", J. Geophys. Res., 80(23), 3322-3342. https://doi.org/10.1029/JB080i023p03322
  3. Ali, M.R. and Okabayashi, T. (2011), "System identification of highway bridges from ambient vibration using subspace stochastic realization theories", Earthq. Struct., 2(2), 189-206. https://doi.org/10.12989/eas.2011.2.2.189
  4. Campillo, M. (2006), "Phase and correlation in random seismic fields and the reconstruction of the Green function", Pure Appl. Geophys., 163(2-3), 475-502. https://doi.org/10.1007/s00024-005-0032-8
  5. Gradshteyn, I.S. and Ryzhik, I.M. (1994), Table of integrals, Series and products fifth edition, Academic Press, London.
  6. Kausel, E. (2006), Fundamental solutions in elastodynamics, A Compendium, Cambridge University Press, New York.
  7. Pitilakis, K.D., Anastasiadis, A.I., Kakderi, K.G., Manakou, M.V., Manou, D.K., Alexoudi, M.N., Fotopoulou, S.D., Argyroudis, S.A. and Senetakis, K.G. (2011), "Development of comprehensive earthquake loss scenarios for a Greek and a Turkish city: Seismic hazard, geotechnical and lifeline aspects", Earthq. Struct., 2(3), 207-232. https://doi.org/10.12989/eas.2011.2.3.207
  8. Perez-Ruiz, J.A., Luzon, F. and Sanchez-Sesma, F.J. (2008), "Retrieval of elastic Green's tensor near a cylindrical inhomogeneity from vector correlations", Commun. Comput. Phys., 3(1), 250-270.
  9. Sanchez-Sesma, F.J. and Campillo, M. (1991), "Diffraction of P, SV and Rayleigh waves by topographic features: A boundary integral formulation", B. Seismol. Soc. Am., 81(6), 2234-2253.
  10. Sanchez-Sesma, F.J. and Campillo, M. (2006), "Retrieval of the Green function from cross-correlation: The canonical elastic problem", B. Seismol. Soc. Am., 96(3), 1182-1191. https://doi.org/10.1785/0120050181
  11. Sanchez-Sesma, F.J., Perez-Ruiz, J.A., Campillo, M. and Luzón, F. (2006), "The elastodynamic 2D Green function retrieval from cross-correlation: The canonical inclusion problem", Geophys. Res. Lett., 33, L13305. https://doi.org/10.1029/2006GL026454
  12. Sanchez-Sesma, F.J., Perez-Ruiz, J.A., Luzon, F., Campillo, M. and Rodriguez-Castellanos, A. (2008), "Diffuse fields in dynamic elasticity", Wave Motion, 45(5), 641-654.
  13. Sato, H. (2010), "Retrieval of Green's function having coda waves from the cross-correlation function in a scattering medium illuminated by a randomly homogeneous distribution of noise sources on the basis of the first-order born approximation", Geophys. J. Int., 180(2), 759-764. https://doi.org/10.1111/j.1365-246X.2009.04432.x
  14. Sato, H. and Fehler, M. (1998), Wave propagation and scattering in the heterogeneous earth, Springer-Verlag, New York.
  15. Snieder, R., Wapenaar, K. and Slob, E. (2006), "Unified Green's function retrieval by cross correlation", Phys. Rev. Lett., 97(4), 234-301.
  16. Snieder, R., Sanchez-Sesma, F.J. and Wapenaar, K. (2009), "Field fluctuations, imaging with backscattered waves, a generalized energy theorem, and the optical theorem", SIAM J. Imag. Sci., 2(2), 763-776. https://doi.org/10.1137/08072913X
  17. Van Manen, D.J., Curtis, A. and Robertsson, J.O.A. (2006), "Interferometric modelling of wave propagation in inhomogeneous elastic media using time-reversal and reciprocity", Geophysics, 71(4), S147-S160. https://doi.org/10.1190/1.2204963
  18. Wapenaar, K. (2004), "Retrieving the elastodynamic Green's function of an arbitrary inhomogeneous medium by cross correlation", Phys. Rev. Lett., 93(25), 254301-1-4. https://doi.org/10.1103/PhysRevLett.93.254301
  19. Wapenaar, K., Slob, E. and Snieder, R. (2007), Unified Green's function retrieval by cross correlation; connection with energy principles", Phys. Rev. E., 75(3), 036103(14). https://doi.org/10.1103/PhysRevE.75.036103
  20. Weaver, R.L. (1982), "On diffuse waves in solid media", J. Acoust. Soc. Am., 71(6), 1608-1609. https://doi.org/10.1121/1.387816
  21. Weaver, R.L. and Lobkis, O.I. (2004), "Diffuse fields in open systems and the emergence of the Green's function", J. Acoust. Soc. Am., 116(5), 2731-2734. https://doi.org/10.1121/1.1810232

Cited by

  1. Some properties of Green's functions for diffuse field interpretation vol.40, pp.9, 2017, https://doi.org/10.1002/mma.3947