DOI QR코드

DOI QR Code

Combined multi-predict-correct iterative method for interaction between pulsatile flow and large deformation structure

  • Wang, Wenquan (Department of Engineering Mechanics, Kunming University of Science and Technology) ;
  • Zhang, Li-Xiang (Department of Engineering Mechanics, Kunming University of Science and Technology) ;
  • Yan, Yan (Department of Engineering Mechanics, Kunming University of Science and Technology) ;
  • Guo, Yakun (School of Engineering, University of Aberdeen)
  • Received : 2012.07.27
  • Accepted : 2012.11.27
  • Published : 2012.12.25

Abstract

This paper presents a fully coupled three-dimensional solver for the analysis of interaction between pulsatile flow and large deformation structure. A partitioned time marching algorithm is employed for the solution of the time dependent coupled discretised problem, enabling the use of highly developed, robust and well-tested solvers for each field. Conservative transfer of information at the fluid-structure interface is combined with an effective multi-predict-correct iterative scheme to enable implicit coupling of the interacting fields at each time increment. The three-dimensional unsteady incompressible fluid is solved using a powerful implicit time stepping technique and an ALE formulation for moving boundaries with second-order time accurate is used. A full spectrum of total variational diminishing (TVD) schemes in unstructured grids is allowed implementation for the advection terms and finite element shape functions are used to evaluate the solution and its variation within mesh elements. A finite element dynamic analysis of the highly deformable structure is carried out with a numerical strategy combining the implicit Newmark time integration algorithm with a Newton-Raphson second-order optimisation method. The proposed model is used to predict the wave flow fields of a particular flow-induced vibrational phenomenon, and comparison of the numerical results with available experimental data validates the methodology and assesses its accuracy. Another test case about three-dimensional biomedical model with pulsatile inflow is presented to benchmark the algorithm and to demonstrate the potential applications of this method.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China (NSFC)

References

  1. Bletzinger, K.U., Gallinger, T., Kupzok ,A. and Wuchner. R. (2006), "Partitioned strategies for optimization on FSI", Proceedings of the European conference on computational fluid dynamics, Delft.
  2. Blom, F.J. (1998), "A monolothical fluid-structure interaction algorithm applied to the piston problem", Comput. Method. Appl. M., 167, 369-391. https://doi.org/10.1016/S0045-7825(98)00151-0
  3. Bungartz, H.J. and Schafer, M. (2006), (Eds.), Fluid-structure interaction: modeling, simulation, optimization, New York: Springer.
  4. Donea, J. (1983), Arbitrary Lagrangian-Eulerian finite element methods, (Eds. Belytschko, T. and Hughes, T.J.R.) Computational Methods for Transient Analysis, Elsevier, Amsterdam.
  5. Donea, J, Jiuliani, S. and Halleux, J.P. (1982), "An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interaction", Comput. Method. Appl. M., 33(1-3), 689-723. https://doi.org/10.1016/0045-7825(82)90128-1
  6. Farhat, C. and Lesoinne, M. (2000), "Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems" Comput. Method. Appl. M., 182(3-4) 499-515. https://doi.org/10.1016/S0045-7825(99)00206-6
  7. Farhat, C., Pierson, K. and Degand, C. (2000), "CFD based simulation of the unsteady aeroelastic response of a maneuvering vehicle", Proceedings of the 38th AIAA Aerospace Sciences Meeting and Exhibit.
  8. Farhat, C., van der Zee, K.G. and Geuzaine, P.H. (2006), "Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity", Comput. Method. Appl. M., 195(17-18), 1973-2001. https://doi.org/10.1016/j.cma.2004.11.031
  9. Ge, L. and Sotiropoulos, F. (2007), "A numerical method for solving the 3D unsteady incompressible Navier Stokes equations in curvililinear domains with complex immersed boundaries", J. Comput. Phyis., 225(2), 1782-1890. https://doi.org/10.1016/j.jcp.2007.02.017
  10. Geuzaine, P., Grandmont, C. and Farhat, C. (2003), "Design and analysis of ALE schemes with provable secondorder timeaccuracy for inviscid and viscous flow simulations", J. Comput. Phys., 191(1), 206-227. https://doi.org/10.1016/S0021-9991(03)00311-5
  11. Guruswamy, G.P. and Byun, C. (1994), "Direct coupling of Euler flow equations with plate finite element structures", AIAA J., 33(2), 375-377.
  12. Heil, M. (2004), "An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems", Comput. Method. Appl. M., 193(1-2), 1-23. https://doi.org/10.1016/j.cma.2003.09.006
  13. Hieber, S.E. and Koumoutsakos, P. (2008), "An immersed boundary method for smoothed particle hydrodynamics of selfpropelled swimmers", J. Comput. Phys., 227(19), 8636-8654. https://doi.org/10.1016/j.jcp.2008.06.017
  14. Hubner, B., Walhorn, E. and Dinkler, D. (2004), "A monolithic approach to fluid-structure interaction using space-time finite elements", Comput. Method. Appl. M., 193(23-26), 2087-2104. https://doi.org/10.1016/j.cma.2004.01.024
  15. Hughes, T.J.R., Liu, W.K. and Zimmermann, T.K. (1981), "Lagrangian-Eulerian finite element formulation for incompressible viscous flows", Comput. Method. Appl. M., 29(3), 329-349. https://doi.org/10.1016/0045-7825(81)90049-9
  16. Koobus, B. and Farhat, C. (1999), "Second-order time-accurate and geometrically conservative implicit schemes for flow computations on unstructured dynamic meshes", Comput. Method. Appl. M., 170(1-2), 103-129. https://doi.org/10.1016/S0045-7825(98)00207-2
  17. Lee, T.R., Chang, Y.S., Choi, J.B., Kim, D.W., Liu, W.K. and Y.J. Kim (2008), "Immersed finite element method for rigid body motions in the incompressible Navier-Stokes flow", Comput. Method. Appl. M., 197(35-38), 2305-2316. https://doi.org/10.1016/j.cma.2007.12.013
  18. Lesoinne, M., Farhat, C. and Maman, N. (1996), "Geometric conservation laws for problems involving moving boundaries and deforming meshes, and their impact on aeroelastic computations", Comput. Method. Appl. M., 134(1-2), 71-90. https://doi.org/10.1016/0045-7825(96)01028-6
  19. Liew, K.M., Wang, W.Q., Zhang, L.X. and He, X.Q. (2007), "A computational approach for predicting hydroelasticity of flexible structures based on the pressure poisson equation", Int. J. Numer. Meth. Eng., 72(13), 1560-1583. https://doi.org/10.1002/nme.2120
  20. Nkonga, B. and Guillard, H. (1994), "Godunov type method on non-structured meshes for three-dimensional moving boundary problems", Comput. Method. Appl. M., 113(1-2), 183-204. https://doi.org/10.1016/0045-7825(94)90218-6
  21. Peskin, C.S. (1972), "Flow patterns around heart valves: a numerical method", J. Comput. Phys., 10(2), 252-271. https://doi.org/10.1016/0021-9991(72)90065-4
  22. Ramaswamy, B. and Kawahara, M. (1987), "Arbitrary Lagrangian-Eulerian finite element method for unsteady, convective, incompressible viscous free surface fluid flow", Int. J. Numer. Meth. Fl., 7, 1053-1075. https://doi.org/10.1002/fld.1650071005
  23. Rugonyi, S. and Bathe, K.J. (2001), "On finite element analysis of fluid flows fully coupled with structural interactions", Comput. Model. Eng. Sci., 2(2), 195-212.
  24. Sarrate, J., Huerta, A. and Donea, J. (2001), "Arbitrary Lagrangian-Eulerian formulation for fluid-rigid body interaction", Comput. Method. Appl. M., 190(24-25), 3171-3188. https://doi.org/10.1016/S0045-7825(00)00387-X
  25. Stein, K.R., Benney, R.J., Tezduyar, T.E., Leonard, J.W. and Accorsi, M.L. (2001), "Fluid-structure interactions of a round parachute: modeling and simulation techniques", J. Aircraft, 38, 800-808. https://doi.org/10.2514/2.2864
  26. Tezduyar, T.E., Sathe, S., Stein, K. and Aureli, L. (2006), Modeling of fluid-structure interactions with the spacetime techniques, Fluid-Structure Interaction (Eds. Bungartz, H.J. and Schafer, M.), Lecture Notes on Computational Science and Engineering, Springer.
  27. Thomas, P.D. and Lombard, C.K. (1979), "Geometric conservation law and its application to flow computations on moving grids", AIAA J., 17, 1030-1037. https://doi.org/10.2514/3.61273
  28. Torii, R., Oshima, M., Kobayashi, T., Takagi, K. and Tezduyar, T.E. (2008), "Fluid-structure interaction modeling of a patientspecific cerebral aneurysm", Comput. Mech., 43(1), 151-159. https://doi.org/10.1007/s00466-008-0325-8
  29. Venkatakrishnan, V. and Mavriplis, D.J. (1996), "Implicit method for the computation of unsteady flows on unstructured grids", J. Comput. Phys., 127(2), 380-397. https://doi.org/10.1006/jcph.1996.0182
  30. Wang, W.Q., He, X.Q., Zhang, L.X, Liew, K.M. and Guo, Y.K. (2009), "Strongly coupled simulation of fluidstructure interaction in a Francis hydroturbine", Int. J. Numer. Meth.Fl., 60(5), 515-538. https://doi.org/10.1002/fld.1898
  31. Womersley, J.R. (1955), "Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known", Physiology, 127, 553-563. https://doi.org/10.1113/jphysiol.1955.sp005276
  32. Zhang, L.X., Guo, Y.K. and Wang, W.Q. (2007), "Large eddy simulation of turbulent flow in a true 3D Francis hydro turbine passage with dynamical fluid-structure interaction", Int. J. Numer. Meth. Fl., 54(5), 517-541. https://doi.org/10.1002/fld.1408
  33. Zhang, N. and Zheng, Z.C. (2007), "An improved direct-forcing immersed-boundary method for finite difference applications", J. Comput. Phyis., 221(1), 250-268. https://doi.org/10.1016/j.jcp.2006.06.012
  34. Roe, P.L. (1983), "Some contributions to the modeling of discontinuous flows", Proceedings of the AMS/SIAM Seminar, San Diego, USA.

Cited by

  1. Strongly coupling partitioned scheme for enhanced added mass computation in 2D fluid-structure interaction vol.5, pp.3, 2012, https://doi.org/10.12989/csm.2016.5.3.235