Acknowledgement
Supported by : National Natural Science Foundation of China (NSFC)
References
- Bletzinger, K.U., Gallinger, T., Kupzok ,A. and Wuchner. R. (2006), "Partitioned strategies for optimization on FSI", Proceedings of the European conference on computational fluid dynamics, Delft.
- Blom, F.J. (1998), "A monolothical fluid-structure interaction algorithm applied to the piston problem", Comput. Method. Appl. M., 167, 369-391. https://doi.org/10.1016/S0045-7825(98)00151-0
- Bungartz, H.J. and Schafer, M. (2006), (Eds.), Fluid-structure interaction: modeling, simulation, optimization, New York: Springer.
- Donea, J. (1983), Arbitrary Lagrangian-Eulerian finite element methods, (Eds. Belytschko, T. and Hughes, T.J.R.) Computational Methods for Transient Analysis, Elsevier, Amsterdam.
- Donea, J, Jiuliani, S. and Halleux, J.P. (1982), "An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interaction", Comput. Method. Appl. M., 33(1-3), 689-723. https://doi.org/10.1016/0045-7825(82)90128-1
- Farhat, C. and Lesoinne, M. (2000), "Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems" Comput. Method. Appl. M., 182(3-4) 499-515. https://doi.org/10.1016/S0045-7825(99)00206-6
- Farhat, C., Pierson, K. and Degand, C. (2000), "CFD based simulation of the unsteady aeroelastic response of a maneuvering vehicle", Proceedings of the 38th AIAA Aerospace Sciences Meeting and Exhibit.
- Farhat, C., van der Zee, K.G. and Geuzaine, P.H. (2006), "Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity", Comput. Method. Appl. M., 195(17-18), 1973-2001. https://doi.org/10.1016/j.cma.2004.11.031
- Ge, L. and Sotiropoulos, F. (2007), "A numerical method for solving the 3D unsteady incompressible Navier Stokes equations in curvililinear domains with complex immersed boundaries", J. Comput. Phyis., 225(2), 1782-1890. https://doi.org/10.1016/j.jcp.2007.02.017
- Geuzaine, P., Grandmont, C. and Farhat, C. (2003), "Design and analysis of ALE schemes with provable secondorder timeaccuracy for inviscid and viscous flow simulations", J. Comput. Phys., 191(1), 206-227. https://doi.org/10.1016/S0021-9991(03)00311-5
- Guruswamy, G.P. and Byun, C. (1994), "Direct coupling of Euler flow equations with plate finite element structures", AIAA J., 33(2), 375-377.
- Heil, M. (2004), "An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems", Comput. Method. Appl. M., 193(1-2), 1-23. https://doi.org/10.1016/j.cma.2003.09.006
- Hieber, S.E. and Koumoutsakos, P. (2008), "An immersed boundary method for smoothed particle hydrodynamics of selfpropelled swimmers", J. Comput. Phys., 227(19), 8636-8654. https://doi.org/10.1016/j.jcp.2008.06.017
- Hubner, B., Walhorn, E. and Dinkler, D. (2004), "A monolithic approach to fluid-structure interaction using space-time finite elements", Comput. Method. Appl. M., 193(23-26), 2087-2104. https://doi.org/10.1016/j.cma.2004.01.024
- Hughes, T.J.R., Liu, W.K. and Zimmermann, T.K. (1981), "Lagrangian-Eulerian finite element formulation for incompressible viscous flows", Comput. Method. Appl. M., 29(3), 329-349. https://doi.org/10.1016/0045-7825(81)90049-9
- Koobus, B. and Farhat, C. (1999), "Second-order time-accurate and geometrically conservative implicit schemes for flow computations on unstructured dynamic meshes", Comput. Method. Appl. M., 170(1-2), 103-129. https://doi.org/10.1016/S0045-7825(98)00207-2
- Lee, T.R., Chang, Y.S., Choi, J.B., Kim, D.W., Liu, W.K. and Y.J. Kim (2008), "Immersed finite element method for rigid body motions in the incompressible Navier-Stokes flow", Comput. Method. Appl. M., 197(35-38), 2305-2316. https://doi.org/10.1016/j.cma.2007.12.013
- Lesoinne, M., Farhat, C. and Maman, N. (1996), "Geometric conservation laws for problems involving moving boundaries and deforming meshes, and their impact on aeroelastic computations", Comput. Method. Appl. M., 134(1-2), 71-90. https://doi.org/10.1016/0045-7825(96)01028-6
- Liew, K.M., Wang, W.Q., Zhang, L.X. and He, X.Q. (2007), "A computational approach for predicting hydroelasticity of flexible structures based on the pressure poisson equation", Int. J. Numer. Meth. Eng., 72(13), 1560-1583. https://doi.org/10.1002/nme.2120
- Nkonga, B. and Guillard, H. (1994), "Godunov type method on non-structured meshes for three-dimensional moving boundary problems", Comput. Method. Appl. M., 113(1-2), 183-204. https://doi.org/10.1016/0045-7825(94)90218-6
- Peskin, C.S. (1972), "Flow patterns around heart valves: a numerical method", J. Comput. Phys., 10(2), 252-271. https://doi.org/10.1016/0021-9991(72)90065-4
- Ramaswamy, B. and Kawahara, M. (1987), "Arbitrary Lagrangian-Eulerian finite element method for unsteady, convective, incompressible viscous free surface fluid flow", Int. J. Numer. Meth. Fl., 7, 1053-1075. https://doi.org/10.1002/fld.1650071005
- Rugonyi, S. and Bathe, K.J. (2001), "On finite element analysis of fluid flows fully coupled with structural interactions", Comput. Model. Eng. Sci., 2(2), 195-212.
- Sarrate, J., Huerta, A. and Donea, J. (2001), "Arbitrary Lagrangian-Eulerian formulation for fluid-rigid body interaction", Comput. Method. Appl. M., 190(24-25), 3171-3188. https://doi.org/10.1016/S0045-7825(00)00387-X
- Stein, K.R., Benney, R.J., Tezduyar, T.E., Leonard, J.W. and Accorsi, M.L. (2001), "Fluid-structure interactions of a round parachute: modeling and simulation techniques", J. Aircraft, 38, 800-808. https://doi.org/10.2514/2.2864
- Tezduyar, T.E., Sathe, S., Stein, K. and Aureli, L. (2006), Modeling of fluid-structure interactions with the spacetime techniques, Fluid-Structure Interaction (Eds. Bungartz, H.J. and Schafer, M.), Lecture Notes on Computational Science and Engineering, Springer.
- Thomas, P.D. and Lombard, C.K. (1979), "Geometric conservation law and its application to flow computations on moving grids", AIAA J., 17, 1030-1037. https://doi.org/10.2514/3.61273
- Torii, R., Oshima, M., Kobayashi, T., Takagi, K. and Tezduyar, T.E. (2008), "Fluid-structure interaction modeling of a patientspecific cerebral aneurysm", Comput. Mech., 43(1), 151-159. https://doi.org/10.1007/s00466-008-0325-8
- Venkatakrishnan, V. and Mavriplis, D.J. (1996), "Implicit method for the computation of unsteady flows on unstructured grids", J. Comput. Phys., 127(2), 380-397. https://doi.org/10.1006/jcph.1996.0182
- Wang, W.Q., He, X.Q., Zhang, L.X, Liew, K.M. and Guo, Y.K. (2009), "Strongly coupled simulation of fluidstructure interaction in a Francis hydroturbine", Int. J. Numer. Meth.Fl., 60(5), 515-538. https://doi.org/10.1002/fld.1898
- Womersley, J.R. (1955), "Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known", Physiology, 127, 553-563. https://doi.org/10.1113/jphysiol.1955.sp005276
- Zhang, L.X., Guo, Y.K. and Wang, W.Q. (2007), "Large eddy simulation of turbulent flow in a true 3D Francis hydro turbine passage with dynamical fluid-structure interaction", Int. J. Numer. Meth. Fl., 54(5), 517-541. https://doi.org/10.1002/fld.1408
- Zhang, N. and Zheng, Z.C. (2007), "An improved direct-forcing immersed-boundary method for finite difference applications", J. Comput. Phyis., 221(1), 250-268. https://doi.org/10.1016/j.jcp.2006.06.012
- Roe, P.L. (1983), "Some contributions to the modeling of discontinuous flows", Proceedings of the AMS/SIAM Seminar, San Diego, USA.
Cited by
- Strongly coupling partitioned scheme for enhanced added mass computation in 2D fluid-structure interaction vol.5, pp.3, 2012, https://doi.org/10.12989/csm.2016.5.3.235